Monitoring of Ambient Air Quality Patterns and Assessment of Air Pollutants’ Correlation and Effects on Ambient Air Quality of Lahore, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Design and Sampling Protocol
2.3. Study Duration
- Strict lockdown (1st strict lockdown 1 April 2020–15 April 2020 and 20 November–15 December 2020)
- Moderate lockdown (six months of 22 April 2020–October 2020)
- Post-COVID-19 Lockdown (January 2021–June 2022).
2.4. Statistical Analysis
2.5. Meteorological Parameters
3. Results
3.1. The trend of Particulate Matter (PM2.5 and PM10)
3.2. Active Pollutants
3.2.1. Monitoring of Sulfur Dioxide in Ambient Air
3.2.2. The Trend of Ozone in Ambient Air
3.2.3. The Trend of Nitrogen Dioxide (NO2) in Ambient Air
3.2.4. Monitoring of Carbon Monoxide in Ambient Air
3.3. Multiple Linear Regression Analysis of Particulate Matter (PM2.5 and PM10) and Gaseous Pollutants
3.4. Comparison of Satellite and Ground-Based Data Sets
3.5. Comparison of Satellite and Ground-Based Data
3.6. The Trend of Meteorological Variation in Lahore
3.7. Correlation of Ground-Monitoring Data with Meteorological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.H.; Kabir, E.; Kabir, S. A Review on the Human Health Impact of Airborne Particulate Matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Allabakash, S.; Lim, S.; Chong, K.-S.; Yamada, T.J. Particulate Matter Concentrations over South Korea: Impact of Meteorology and Other Pollutants. Remote Sens. 2022, 14, 4849. [Google Scholar] [CrossRef]
- Monks, P.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change–global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef] [Green Version]
- Jahanzaib, M.; Sharma, S.; Bakht, A.; Heo, J.; Park, D. Analyzing the Effectiveness of Air Curtain in Reducing Particulate Matter Generated by Human-Induced Slipstream. Process Saf. Environ. Prot. 2023, 170, 834–841. [Google Scholar] [CrossRef]
- Sharma, S.; Bakht, A.; Jahanzaib, M.; Lee, H.; Park, D. Evaluation of the Effectiveness of Common Indoor Plants in Improving the Indoor Air Quality of Studio Apartments. Atmosphere 2022, 13, 1863. [Google Scholar] [CrossRef]
- Asif, A.; Zeeshan, M.; Jahanzaib, M. Indoor Temperature, Relative Humidity and CO2 Levels Assessment in Academic Buildings with Different Heating, Ventilation and Air-Conditioning Systems. Build. Environ. 2018, 133, 83–90. [Google Scholar] [CrossRef]
- Butt, M.U.; Waseef, R.F.; Ahmed, H. Perception about the Factors Associated with Smog among Medical Students. Biomedica 2018, 34, 264. [Google Scholar]
- Kermani, M.; Jonidi Jafari, A.; Gholami, M.; Taghizadeh, F.; Masroor, K.; Abdolahnejad, A.; Shahsavani, A.; Fanaei, F. Characterisation of PM2.5–Bound PAHs in Outdoor Air of Karaj Megacity: The Effect of Meteorological Factors. Int. J. Environ. Anal. Chem. 2021, 103, 3290–3308. [Google Scholar] [CrossRef]
- Farrow, A.; Miller, K.A.; Myllyvirta, L. Toxic Air: The Price of Fossil Fuels. Greenpeace Southeast Asia. 2020, pp. 1–44. Available online: https://www.greenpeace.org/static/planet4-southeastasia-stateless/2020/02/21b480fa-toxic-air-report-110220.pdf (accessed on 17 January 2023).
- PAQI. Lahore Smog, Just How Bad Is It? Pakistan Air Quality Initiative. 2018. Available online: https://www.iqair.com/profile/pakistan-air-quality-initiative (accessed on 20 June 2020).
- Air Quality Index (AQI) of Lahore. 2022. Available online: https://epd.punjab.gov.pk/system/files?file=21.09.2022%20%281%29.pdf (accessed on 20 June 2022).
- Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Furlong, M.A.; Klimentidis, Y.C. Associations of Air Pollution with Obesity and Body Fat Percentage, and Modification by Polygenic Risk Score for BMI in the UK Biobank. Environ. Res. 2020, 185, 109364. [Google Scholar] [CrossRef]
- Sun, Q.; Yue, P.; Deiuliis, J.A.; Lumeng, C.N.; Kampfrath, T.; Mikolaj, M.B.; Cai, Y.; Ostrowski, M.C.; Lu, B.; Parthasarathy, S.; et al. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity. Circulation 2009, 119, 538–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Yavar, Z.; Verdin, M.; Ying, Z.; Mihai, G.; Kampfrath, T.; Wang, A.; Zhong, M.; Lippmann, M.; Chen, L.C.; et al. Effect of Early Particulate Air Pollution Exposure on Obesity in Mice: Role of P47phox. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2518–2527. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, L.; Huang, Q.; Hong, A.; Yu, C.; Xiao, Q.; Zou, B.; Ji, S.; Zhang, L.; Zou, K.; et al. Traffic-Related Environmental Factors and Childhood Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. 2021, 22, e12995. [Google Scholar] [CrossRef] [Green Version]
- Jerrett, M.; McConnell, R.; Wolch, J.; Chang, R.; Lam, C.; Dunton, G.; Gilliland, F.; Lurmann, F.; Islam, T.; Berhane, K. Traffic-Related Air Pollution and Obesity Formation in Children: A Longitudinal, Multilevel Analysis. Environ. Health Glob. Access Sci. Source 2014, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.H.; Wang, J.; Zeng, X.W.; Chen, L.; Qin, X.D.; Zhou, Y.; Li, M.; Yang, M.; Zhao, Y.; Ren, W.H.; et al. Interactions between Air Pollution and Obesity on Blood Pressure and Hypertension in Chinese Children. Epidemiology 2015, 26, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Bloemsma, L.D.; Wijga, A.H.; Klompmaker, J.O.; Janssen, N.A.H.; Smit, H.A.; Koppelman, G.H.; Brunekreef, B.; Lebret, E.; Hoek, G.; Gehring, U. The Associations of Air Pollution, Traffic Noise and Green Space with Overweight throughout Childhood: The PIAMA Birth Cohort Study. Environ. Res. 2019, 169, 348–356. [Google Scholar] [CrossRef]
- de Bont, J.; Casas, M.; Barrera-Gómez, J.; Cirach, M.; Rivas, I.; Valvi, D.; Álvarez, M.; Dadvand, P.; Sunyer, J.; Vrijheid, M. Ambient Air Pollution and Overweight and Obesity in School-Aged Children in Barcelona, Spain. Environ. Int. 2019, 125, 58–64. [Google Scholar] [CrossRef]
- Lee, Y.L.; Su, H.J.; Sheu, H.M.; Yu, H.S.; Guo, Y.L. Traffic-Related Air Pollution, Climate, and Prevalence of Eczema in Taiwanese School Children. J. Investig. Dermatol. 2008, 128, 2412–2420. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, V.; Zutavern, A.; Cyrys, J.; Brockow, I.; Koletzko, S.; Krämer, U.; Behrendt, H.; Herbarth, O.; Von Berg, A.; Bauer, C.P.; et al. Atopic Diseases, Allergic Sensitization, and Exposure to Traffic-Related Air Pollution in Children. Am. J. Respir. Crit. Care Med. 2008, 177, 1331–1337. [Google Scholar] [CrossRef]
- Pénard-Morand, C.; Raherison, C.; Charpin, D.; Kopferschmitt, C.; Lavaud, F.; Caillaud, D.; Annesi-Maesano, I. Long-Term Exposure to Close-Proximity Air Pollution and Asthma and Allergies in Urban Children. Eur. Respir. J. 2010, 36, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Lee, K.; Lee, Y.M.; Lee, J.H.; Lee, S.I.; Yu, S.D.; Paek, D. Acute Health Effects of Urban Fine and Ultrafine Particles on Children with Atopic Dermatitis. Environ. Res. 2011, 111, 394–399. [Google Scholar] [CrossRef]
- Kim, J.; Kim, E.H.; Oh, I.; Jung, K.; Han, Y.; Cheong, H.K.; Ahn, K. Symptoms of Atopic Dermatitis Are Influenced by Outdoor Air Pollution. J. Allergy Clin. Immunol. 2013, 132, 495–499. [Google Scholar] [CrossRef]
- Kathuria, P.; Silverberg, J.I. Association of Pollution and Climate with Atopic Eczema in US Children. Pediatr. Allergy Immunol. 2016, 27, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Lal, R.M.; Guttikunda, S.K.; Russell, A.G.; Nagpure, A.S.; Ramaswami, A.; Peltier, R.E. Monitoring Particulate Matter in India: Recent Trends and Future Outlook. Air Qual. Atmos. Health 2019, 12, 45–58. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Jafari, A.J.; Shahsavani, A.; Abdolahnejad, A.; Kermani, M.; Fanaei, F. Quantification of Mortality and Morbidity in General Population of Heavily-Industrialized City of Abadan: Effect of Long-Term Exposure. J. Air Pollut. Health 2020, 5, 171–180. [Google Scholar] [CrossRef]
- Miller, M.D.; Marty, M.A. Impact of Environmental Chemicals on Lung Development. Environ. Health Perspect. 2010, 118, 1155–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, M.; Mahwish, A.; Nichol, J.E.; Qiu, Z.; Nazeer, M.; Ali, M.A.; de Leeuw, G.; Levy, R.C.; Wang, Y.; Chen, Y.; et al. Air Pollution Scenario over Pakistan: Characterization and Ranking of Extremely Polluted Cities Using Long-Term Concentrations of Aerosols and Trace Gases. Remote Sens. Environ. 2021, 264, 112617. [Google Scholar] [CrossRef]
- Tariq, S.; Ul-Haq, Z.; Ali, M. Analysis of Optical and Physical Properties of Aerosols during Crop Residue Burning Event of October 2010 over Lahore, Pakistan. Atmos. Pollut. Res. 2015, 6, 969–978. [Google Scholar] [CrossRef]
- ul-Haq, Z.; Tariq, S.; Ali, M.; Mahmood, K.; Batool, S.A.; Rana, A.D. A Study of Tropospheric NO2 Variability over Pakistan Using OMI Data. Atmos. Pollut. Res. 2014, 5, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, M.F.; Yasmin, N.; Fatima, N.; Beirle, S.; Wagner, T. Detection of Trends and Seasonal Variation in Tropospheric Nitrogen Dioxide over Pakistan. Aerosol Air Qual. Res. 2015, 15, 2508–2524. [Google Scholar] [CrossRef]
- Khokhar, M.F.; Mehdi, H.; Abbas, Z.; Javed, Z. Temporal Assessment of NO2 Pollution Levels in Urban Centers of Pakistan by Employing Ground-Based and Satellite Observations. Aerosol Air Qual. Res. 2016, 16, 1854–1867. [Google Scholar] [CrossRef]
- ul-Haq, Z.; Tariq, S.; Ali, M. Spatiotemporal Assessment of CO2 Emissions and Its Satellite Remote Sensing over Pakistan and Neighboring Regions. J. Atmos. Solar-Terr. Phys. 2017, 152–153, 11–19. [Google Scholar] [CrossRef]
- Gautam, S. COVID-19: Air Pollution Remains Low as People Stay at Home. Air Qual. Atmos. Health 2020, 13, 853–857. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.H.; Wang, Y.F.; Hsieh, Y.K.; Wan, S.; Zhang, J. Air Quality Index, Indicatory Air Pollutants and Impact of COVID-19 Event on the Air Quality near Central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air Quality Changes during the COVID-19 Lockdown over the Yangtze River Delta Region: An Insight into the Impact of Human Activity Pattern Changes on Air Pollution Variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Xing, J.; Li, S.; Jiang, Y.; Wang, S.; Ding, D.; Dong, Z.; Zhu, Y.; Hao, J. Quantifying the Emission Changes and Associated Air Quality Impacts during the COVID-19 Pandemic on the North China Plain: A Response Modeling Study. Atmos. Chem. Phys. 2020, 20, 14347–14359. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 Lockdown Effects on Air Quality by NO2 in the Cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of Restricted Emissions during COVID-19 on Air Quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of Lockdown amid COVID-19 Pandemic on Air Quality of the Megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Mor, S.; Kumar, S.; Singh, T.; Dogra, S.; Pandey, V.; Ravindra, K. Impact of COVID-19 Lockdown on Air Quality in Chandigarh, India: Understanding the Emission Sources during Controlled Anthropogenic Activities. Chemosphere 2021, 263, 127978. [Google Scholar] [CrossRef]
- Statistical Bureau of Punjab; Government of Punjab. 2021. Available online: https://bos.punjab.gov.pk/system/files/PIF-2022.pdf (accessed on 30 May 2022).
- Asna-ashary, M.; Farzanegan, M.R.; Feizi, M.; Sadati, S.M. COVID-19 Outbreak and Air Pollution in Iran: A Panel VAR Analysis. MAGKS Papers on Economics 202016, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung). 2020. Available online: https://ideas.repec.org/p/mar/magkse/202016.html (accessed on 17 January 2023).
- United Nation News. WHO Chief Declares End to COVID-19 as a Global Health Emergency. 2020. Available online: https://news.un.org/en/story/2023/05/1136367 (accessed on 21 June 2022).
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect Effects of COVID-19 on the Environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 Pandemic and Environmental Pollution: A Blessing in Disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental Perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global Estimates of Mortality Associated with Longterm Exposure to Outdoor Fine Particulate Matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of Life Expectancy from Air Pollution Compared to Other Risk Factors: A Worldwide Perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Elansky, N.F.; Kouznetsov, R.D.; Verevkin, Y.M.; Ponomarev, N.A.; Rakitin, V.S.; Shilkin, A.V.; Semutnikova, E.G.; Zakharova, P.V. Time variations in the concentration of pollutants in the atmosphere over Moscow and estimation of their emissions. IOP Conf. Ser. Earth Environ. Sci. 2019, 231, 012014. [Google Scholar] [CrossRef]
- Szep, R.; Matyas, L.; Keresztes, R.; Ghimpusan, M. Tropospheric Ozone Concentrations—Seasonal and Daily Analysis and Its Association with NO and NO2 as a Function of NOx in Ciuc Depression—Romania. Rev. Chim. 2016, 67, 205–213. [Google Scholar]
- Meng, Q.; Fan, S.; He, J.; Zhang, J.; Sun, Y.; Zhang, Y.; Zu, F. Particle Size Distribution and Characteristics of Polycyclic Aromatic Hydrocarbons during a Heavy Haze Episode in Nanjing, China. Particuology 2015, 18, 127–134. [Google Scholar] [CrossRef]
Year | α for NO2 | β for SO2 | γ for CO | δ for O3 | No. of Data Sets |
---|---|---|---|---|---|
2020 | 0.482 | 0.730 | 4.051 | 0.307 | 234 |
2021 | 0.144 | 0.514 | 7.366 | 0.923 | 278 |
2022 | −0.0250 | 0.641 | 0.260 | 0.0923 | 176 |
Year | α for NO2 | β for SO2 | γ for CO | δ for O3 | No. of Data Sets |
---|---|---|---|---|---|
2020 | 0.0675 | 0.298 | 1.439 | 0.126 | 234 |
2021 | 0.144 | 0.514 | 7.366 | 0.923 | 278 |
2022 | 0.893 | 0.133 | −0.403 | 0.211 | 176 |
Dew | TCC | TMax | TMin | Precipitation | NO2 | Ozone | PM2.5 | PM10 | SO2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SRAD | 0.27 | −0.13 | 0.87 | 0.68 | −0.31 | −0.53 | 0.22 | −0.46 | −0.37 | −0.53 | |
0.15 | 0.51 | 0.00 | 0.00 | 0.10 | 0.00 | 0.24 | 0.01 | 0.04 | 0.00 | ||
Dew | Pearson Correlation | 1 | 0.04 | 0.63 | 0.85 | 0.57 | −0.49 | 0.33 | −0.50 | −0.33 | −0.49 |
Sig. (2-tailed) | 0.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.075 | 0.00 | ||
TCC | Pearson Correlation | 1 | −0.15 | 0.01 | 0.44 | 0.15 | −0.06 | 0.27 | 0.26 | 0.15 | |
Sig. (2-tailed) | 0.44 | 0.93 | 0.01 | 0.43 | 0.76 | 0.17 | 0.18 | 0.43 | |||
TMax | Pearson Correlation | 1 | 0.92 | 0.04 | −0.65 | 0.37 | −0.63 | −0.52 | −0.65 | ||
Sig. (2-tailed) | 0.00 | 0.82 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | ||||
TMin | Pearson Correlation | 1 | 0.33 | −0.62 | 0.37 | −0.60 | −0.46 | −0.62 | |||
Sig. (2-tailed) | 0.08 | 0.005 | 0.04 | 0.00 | 0.01 | 0.00 | |||||
Precipitation | Pearson Correlation | 1 | −0.05 | 0.11 | −0.04 | 0.04 | −0.05 | ||||
Sig. (2-tailed) | 0.80 | 0.55 | 0.83 | 0.80 | 0.80 | ||||||
NO2 | Pearson Correlation | 1 | −0.73 | 0.87 | 0.83 | 1.00 | |||||
Sig. (2-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |||||||
Ozone | Pearson Correlation | 1 | −0.61 | −0.63 | −0.73 | ||||||
Sig. (2-tailed) | 0.00 | 0.00 | 9.22 × 10−5 | ||||||||
PM2.5 | Pearson Correlation | 1 | 0.95 | 0.86 | |||||||
Sig. (2-tailed) | 0.00 | 2.28 × 10−8 | |||||||||
PM10 | Pearson Correlation | 1 | 0.83 | ||||||||
Sig. (2-tailed) | 4.63 × 10−7 | ||||||||||
SO2 | Pearson Correlation | 1 | |||||||||
Sig. (2-tailed) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.A.; Sharif, F.; Khokhar, M.F.; Shahzad, L.; Ehsan, N.; Jahanzaib, M. Monitoring of Ambient Air Quality Patterns and Assessment of Air Pollutants’ Correlation and Effects on Ambient Air Quality of Lahore, Pakistan. Atmosphere 2023, 14, 1257. https://doi.org/10.3390/atmos14081257
Khan WA, Sharif F, Khokhar MF, Shahzad L, Ehsan N, Jahanzaib M. Monitoring of Ambient Air Quality Patterns and Assessment of Air Pollutants’ Correlation and Effects on Ambient Air Quality of Lahore, Pakistan. Atmosphere. 2023; 14(8):1257. https://doi.org/10.3390/atmos14081257
Chicago/Turabian StyleKhan, Waqas Ahmed, Faiza Sharif, Muhammad Fahim Khokhar, Laila Shahzad, Nusrat Ehsan, and Muhammad Jahanzaib. 2023. "Monitoring of Ambient Air Quality Patterns and Assessment of Air Pollutants’ Correlation and Effects on Ambient Air Quality of Lahore, Pakistan" Atmosphere 14, no. 8: 1257. https://doi.org/10.3390/atmos14081257
APA StyleKhan, W. A., Sharif, F., Khokhar, M. F., Shahzad, L., Ehsan, N., & Jahanzaib, M. (2023). Monitoring of Ambient Air Quality Patterns and Assessment of Air Pollutants’ Correlation and Effects on Ambient Air Quality of Lahore, Pakistan. Atmosphere, 14(8), 1257. https://doi.org/10.3390/atmos14081257