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Abstract: This study analyzed the multifractal characteristics of daily reference evapotranspiration
(ETo) time series of the Tabriz and Urmia stations of northwestern Iran and its cross-correlation
with five other meteorological variables. The results of multifractal detrended fluctuation analy-
sis (MFDFA) of ETo, temperature, pressure, relative humidity solar radiation, and wind velocity
showed that all the time series of both stations exhibited multifractality and long memory persis-
tence with higher persistence and complexity in the datasets of Urmia station. Then, a multivariate
empirical mode decomposition (MEMD)-(MFDFA) coupled framework was proposed to identify
the dominant modes suitable for the forecasting of the different variables. The examination of re-
constructed time series consistently displayed an increase in persistence and multifractality. The
cross-correlation between different candidate variables and ETo was examined using a recently
proposed multifractal cross-correlation analysis (MFCCA) method. The results showed that in each
pair-wise cross-correlation analysis, the joint persistence is approximately half of the persistence
of an individual time series, reinforcing the universality in the fractal cross-correlation analysis.
The cross-correlation properties displayed diverse patterns in different pair-wise combinations of
cross-correlation analysis despite the similarity of patterns among the data of the two stations.

Keywords: evapotranspiration; multifractal; decomposition; Iran; correlation; scaling

1. Introduction

Evapotranspiration (ET) is one of the prominent components of a hydrologic cycle,
and its accurate prediction is vital in irrigation and water resources management. The
rate of ET from a reference crop of 0.12 m height, bulk surface resistance of 70 sm−1, and
albedo of 0.23, assuming a surplus of soil moisture, is called reference evapotranspiration
(ETo) [1], is perhaps the most tangible form of evapotranspiration in the analysis of a
hydrologic cycle. ETo is often controlled by numerous meteorological variables, and
the inherent complexities of such variables often force researchers to search for diverse
methods, ranging from statistical to machine learning, for accurate modeling [2,3]. Hydro-
climatic time series often possess nonlinear and nonstationary characteristics with the
presence of trends, shifts, and abrupt fluctuations, which are also exhibited in the ETo
time series. The characterization of a time series and the examination of its long-term
dependency is crucial for the accurate modeling of the process [4]. Hurst proposed the
rescaled range (R/S) analysis as one of the initial contributions to the persistence of a
time series [4]. Mantelbrot [5] presented the theory of fractality, which determines that
on subdividing a geometrical object into parts, each part will be a downscaled copy of
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the object. Fractality is closely linked with persistence, and a considerable number of
algorithms have been proposed for estimating the fractal behavior of the time series. The
Fourier spectral method [6], wavelet-based analysis [7], arbitrary order Hilbert spectral
analysis (AOHSA) [8], structure function [9,10], and visibility graph analysis [11,12] are
among them. Peng et al. [13] proposed a robust technique, namely detrended fluctuation
analysis (DFA), for analyzing the fractality based on a detrending operation. Kantelhardt
et al. [14] propounded the multifractal (MF) extension of DFA (so-called MFDFA). The
multifractal parameters can be considered as ‘fingerprints’ of the series, as they are useful
in modeling [15].

In the past two decades, numerous studies on the multifractal analysis of hydro-
climatic data were performed using MFDFA [16–22]. Multifractal properties were also
detected in meteorological time series, such as temperature, wind velocity, solar radiation,
and relative humidity, in different parts of the world [23–28]. Baranowski et al. [29]
analyzed the scaling properties of the time series of temperature, wind speed, relative
humidity, rainfall, and solar radiation comprising over 11,000 points from stations in
Germany, Finland, Spain, and Poland. Long-range correlations were the reasons for the
multifractality of the majority of the series, except for rainfall. Krzyszczak et al. [27] used
MFDFA to analyze the multifractal properties of the meteorological datasets of four stations
in Poland and Bulgaria located in varying climatic zones. They have analyzed daily time
series comprising more than 11,000 observations of temperature, rainfall, relative humidity,
and wind speed. It was revealed that the multifractal characteristics of rainfall are quite
different from those of others. Entire time series were partitioned at about 2001–2002, and
the multifractal characteristics were analyzed to evaluate the differences in dynamics. The
multifractal spectrum was found to be susceptible to climatic shift, and it was especially
apparent for asymmetry, which changed from being right to left skewed, implying more
extreme events in the recent past.

Evapotranspiration is a complex process that happens as a visible natural outcome
of the concurrent interactions of different meteorological variables. The modeling of any
hydrologic variable is a challenging problem for a hydrologist, for which either a time-
series approach, a cause–effect approach, or a combined approach involving the two can be
followed. Several methods have been proposed in the past for modeling reference-crop
ETo including mass transfer, water budget, pan evaporation, radiation, and temperature-
based methods, as well as the recent practices of data-driven methods [30,31]. Recently,
Sreedevi et al. [32] investigated the teleconnection between the meteorological variables
and reference ETo of Urmia and Tabriz of northwestern Iran in a multi-scale perspective.
The region is hydro-climatologically sensitive and of ecological importance because of the
presence of Lake Urmia, and it is important to investigate the impact of different climate
regimes on the modeling of hydrological variables. Identifying the most appropriate
predictor variables and understanding the joint association between the influential variables
with Eto are among the key steps in the more popular cause–effect approach of modeling
evapotranspiration. According to the authors’ knowledge, even though many studies have
been proposed for evaluating the fractal properties of hydrological variables employing the
MFDFA procedure, the study on the multifractal characterization of evapotranspiration is
scarce in the literature [2,20,33]. Ariza-Villaverde et al. [34] used joint multifractal analysis
for examining the association between temperature, relative humidity, and ETo of Cordoba
city in Spain. Multifractal characterization of daily ETo in different climate zones of China
was performed by Zhan et al. [35]. Gómez-Gómez et al. [36] analyzed the cross-correlation
between the meteorological variables and ETo of the Guadalquivir River Valley using the
multifractal detrended cross-correlation method.

The objectives of this paper include (i) analyzing the multifractality daily ETo time
series and five other climate variables (temperature, pressure, relative humidity, wind
velocity, and solar radiation) of two stations located in northwestern Iran, (ii) proposing an
MEMD-MFDFA method for the identification of the dominant modes for the prediction of
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candidate variables, and (iii) investigating the cross-correlation between ETo and the five
climate variables using multifractal cross-correlation analysis (MFCCA).

2. Study Area and Observation Data

In this study, temperature (T) (◦C), pressure (P) (kPa), wind velocity (U) (ms−1),
relative humidity (RH) (%), solar radiation (SR) (kJ m−2), and ETo (mm) at daily time
scales obtained from the two stations at Tabriz and Urmia cities were considered for the
multifractal analysis (June 1992 to October 2018 for Tabriz and June 1992 to October 2016
for Urmia). The positions of the stations are given in Figure 1. Tabriz city, which has a mean
altitude of 1350 m, is located between latitudes 38◦8′ N and 46◦15′ E at the intersection of
the Aji and Quri rivers. Tabriz has a rainfall of about 378 mm annually; it experiences a dry
to semi-hot summer and a mild climate in spring. The mean temperature is nearly 14 ◦C
per year with a rate of ET around 1740 mm/year. Urmia is located at 37◦34′ N and 44◦58′ E
in northwestern Iran at an average altitude of 1332 m. Urmia experiences scanty summer
rainfall and heavy rainfall in winter. In most years, freezing occurs over four months. The
annual rainfall of the station is nearly 310 mm [37]. Time-series plots of the data for Tabriz
and Urmia used in this study are shown in Figures 2 and 3.
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Figure 2. Time-series plots of hydro-meteorological variables at Tabriz station for (a) temperature,
(b) pressure, (c) relative humidity, (d) wind velocity, (e) solar radiation, and (f) reference evapotran-
spiration (ETo).
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Figure 3. Time-series plots of hydro-meteorological variables at Urmia station for (a) temperature,
(b) pressure, (c) relative humidity, (d) wind velocity, (e) solar radiation, and (f) reference evapotran-
spiration (ETo).

The quick reception of solar irradiance results in the rise in temperature and the
subsequent increase in ET. Therefore, Tabriz records a higher maximum pan evaporation
and maximum temperature (15 mm/day and 35 ◦C, respectively) than Urmia (11 mm/day
and 34 ◦C). However, because of Lake Urmia, evaporation will be higher in that region,
leading to higher maximum and average daily rainfall (3.8 mm and 0.7 mm, respectively)
than in Tabriz (3 mm and 0.6 mm). The statistical properties of the hydro-meteorological
data of the Tabriz and Urmia stations are stated in Table 1.
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Table 1. Statistical properties of hydro-meteorological variables of the Tabriz and Urmia stations. SD
and CV respectively show the standard deviation and the coefficient of variation.

Station Variable From To
Statistical Property

Maximum Minimum Mean SD CV (%)

Tabriz

Temperature (◦C) 1/6/1992 26/10/2018 33.20 −15.000 13.34 10.38 77.81
Pressure (kPa) 1/6/1992 26/10/2018 878.44 850.95 864.40 4.32 0.50

Relative Humidity (%) 1/6/1992 26/10/2018 95.875 10.5 50.57 17.683 34.96
Wind Velocity (ms−1) 1/6/1992 26/10/2018 9.500 0.00 3.384 1.60 47.28

Solar Radiation (kJ m−2) 1/6/1992 26/10/2018 3479 43.00 1698.0 792.22 46.65
Evapotranspiration (mm) 1/6/1992 26/10/2018 21.20 −0.185 6.1598 4.88935 79.37

Urmia

Temperature (◦C) 1/6/1992 10/11/2018 30.00 −13.00 11.88 9.42 79.29
Pressure (kPa) 1/6/1992 26/10/2018 882.00 853.24 867.19 4.47 0.515

Relative Humidity (%) 1/6/1992 26/10/2018 99.50 20.13 57.99 15.69 27.06
Wind Velocity (ms−1) 1/6/1992 26/10/2018 7.63 0.00 2.13 1.11 52.11

Solar Radiation (kJ m−2) 1/6/1992 26/10/2018 3540.00 16.00 1774.16 805.30 45.39
Evapotranspiration (mm) 1/6/1992 26/10/2018 13.80 0.00 4.13 3.39 82.08

3. Materials and Methods
3.1. Multifractal Detrended Fluctuation Analysis (MFDFA)

MFDFA is a well-established algorithm for detecting the scaling behaviors and multi-
fractality of nonlinear and nonstationary datasets. This method involves (i) the computation
of a profile by subtracting each value in the time series from its mean, (ii) the division of
the profiles into segments of different lengths (so-called scale, s) and the polynomial fitting
for each of them, (iii) estimating the local trend by taking the difference of the segment
from the fitted polynomial, for each moment order (q), by the aggregation and averaging of
operations, and (v) performing a logarithmic fit between the fluctuation function to obtain
the generalized Hurst exponents (GHE) for different moment orders, and this value for
moment order q = 2 is quite similar to the classical Hurst exponent, which can provide
information on the persistence of the time series. Then, based on the plot between GHE
and the q-order, one can comment on the fractality of the time series, i.e., whether it is
monofractal or multifractal. Subsequently, the multifractal spectrum can be derived, which
can provide useful insights into the multifractal strength of the series. More details on the
algorithm are provided in Appendix A.

3.2. Multifractal Cross-Correlation Analysis (MFCCA)

The mutual association between different hydrologic and climatic variables was tra-
ditionally analyzed using a correlation coefficient (R). However, the R value may be mis-
leading if outliers are present and it is only deciphering the linear association between
the variables. Podobnik and Stanley [38] propounded the detrended cross-correlation
analysis (DCCA) to analyze the power-law cross-correlations between the two signals.
Extension of DCCA to a multifractal domain was made by researchers via the proposal of
multifractal DCCA [39], multifractal detrending moving-average cross-correlation analysis
(MFXDMA) [40], and multifractal cross-correlation analysis (MFCCA) [41]. These improvi-
sations have been applied to time series from different scientific fields [2,20,33,42,43]. The
steps of MFCCA are as follows:

1. Consider two time-series signals, xi and yi (i = 1,2,. . .,N), to find their profiles:

Xp(j) =
j

∑
i=1

[xi − xm] (1)

and

Yp(j) =
j

∑
i=1

[yi − ym] (2)

where i = 1,2,. . .. . .., N; xm and ym are the mean of the respective signals.
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2. Divide the series into Ns independent windows, both in progressive and retrograde
orders (hence, 2Ns), to avoid any exclusion of data points at the head and tail ends.

3. For each window, compute the local trends by fitting an m-order polynomial:

f f XY
2(v, s) =

{
1
s

s

∑
k=i

[(X((v− 1) + k)− pX,ν
m(k))× (Y((v− 1) + k)− pY,ν

m(k))]

}
(3)

4. Estimate the detrended covariance:

Fq
XY(s) =

1
2Ns

2Ns−1

∑
υ=0

sign
[

f fXY
2(υ, s)

]∣∣∣ f fXY
2(υ, s)

∣∣∣q/2
(4)

where Fq
XY(s) is the fluctuation function (FFn), bearing the relation:

Fq
XY(s) ~ sλ(q) (5)

where s is the segment size.

The exponent λ(q) is similar to the GHE in MFDFA. Unlike DCCA, it is a method that
also accounts for the sign of FFn of different statistical moment orders. The modifications of
Equations (3) and (4) for backward computations and q = 0 can be found in the literature [44].

The coefficient ρXY is coined as the ratio between the covariance function FXY and the
variance functions FX and FY after detrending [45]:

ρXY =
Fq

XY√
Fq

X
√

Fq
Y

(6)

ρXY range [−1,1], (±0.66 to ±1) indicates high, (±0.33 to ±0.66) is moderate, and
(zero to ±0.33) is low [46]. The MFCCA analysis can provide a better physical insight,
as it indicates the scale-specific correlation between two variables, which computes the
covariance function of two time series along with the signs [47,48].

3.3. Multivariate Empirical Mode Decomposition (MEMD)

Empirical mode decomposition (EMD) is a data-based decomposition technique pro-
vided by Nordan E. Huang in 1998, which decomposes a signal into enough modes with
definite periodicity and is based on spline fitting through the extremes (crest and trough
points) of the signal. The multivariate EMD propounded by Rehman and Mandic [49]
is an extended version of EMD, which can decompose more than three signals con-
currently by tracking the common scales in them. Here, multiple envelopes are devel-
oped by finding the projections of inputs along various directions in an n-D space. Let
V(t) = {V1(t), V2(t) . . . Vn(t)} be the m variable signals and DVθd =

{
D1

d, D2
d, . . . , Dnd

}
denote the direction vectors (DVs) defined by angles θd =

{
θ1

d, θ2
d, . . . θn−1

d
}

in direction
set DV (d = 1,2,3,. . .D), where D is the number of directions. It is noteworthy to state that
instead of there being oscillatory modes in EMD, rotational modes are generated in MEMD.

The mean zero rotation components (called intrinsic mode functions or IMFs) can be
obtained by the following steps:

1. Generating appropriate sets of DVs by sampling on a (n − 1) unit hypersphere;
2. Computing the projections pθd(t) of V(t) along the DVs DVθd for all d;
3. Finding the time instants ti

θd of the maxima of projections for all d;
4. Interpolating [ti

θd , D(ti
θd)] to get the surface Eθd(t) for all d;

5. Finding the mean of surfaces:

S(t) =
1
K

K

∑
k=1

Eθd(t) (7)
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6. Extracting R(t) = V(t) − S(t). If R(t) satisfies the termination criteria, repeat from (1)
onward upon (V(t) − R(t)), otherwise repeat from (2) upon the reminder R(t).

This method has many advantages over conventional EMD, as it provides cleaner
decomposition and spectral representation of the signals, ensures an equal number of
components for different candidate series by recognizing the scales commonly present,
and is easier to implement [49–51]. The Hammersley sampling scheme is suitable for
generating DVs, and the Cauchy-type termination criteria is suitable for implementing the
algorithm [51]. MEMD is used as a data-processing tool in a hybrid modeling framework
for modeling hydrological variables including evapotranspiration [52–54]. This study
proposes the use of MEMD instead of conventional EMD, for identifying the dominant
modes, which can improve the predictability of the time series [55].

The MEMD algorithm can decompose any complex time series into a definite number
of IMFs of specific frequency and end residual. In general, the modes are arranged in
descending order of their frequencies, with the mode of highest frequency IMF at the top.
In the practical hydrological signals, there is a good chance that some of the modes, like
high-frequency IMFs, may contain noise, which may affect the performance in predictions.
Hence, the elimination of the noise-intruded component is very important in improving
the predictability of the hydrological signals.

3.4. MEMD-MFDFA Framework for Reconstruction

An MFDFA-based approach is proposed for identifying the less-contributing signals.
The different steps of this framework are presented in Figure 4.
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Most of the EMD-based de-noising methods in the past considered the highest fre-
quency mode only (IMF1) as noise [55], and in this procedure, we consider both Gaussian
white noise and anti-persistent processes by fixing a threshold H of 0.5.

4. Results and Discussion

In this section, the results of the MFDFA analysis performed on different time-series
data collected from the Tabriz and Urmia stations are provided first. Then, the results of
the reconstructed time series using the proposed MEMD-MFDFA framework are presented,
followed by the results of the MFDFA analysis of the reconstructed data. In the final subsection,
the results of the cross-correlation analysis between different variables and ETo are presented.

4.1. MFDFA of ETo and Meteorological Variables

In the MF-DFA framework, the presence of seasonality in a time series is associated with
potential crossovers in the log–log plots of Fq(s) vs. s [28]. This characteristic can significantly
impact the results and their interpretation, primarily because of the existence of different
scaling regimes in the multifractal properties. An effective approach to removing seasonality
is to use seasonal-trend decomposition based on Loess (STL) [56]. STL applies a filtering
technique to decompose a time series into its seasonal, trend, and remainder components.
In this study, the STL method is employed to remove the seasonal and trend components
from the six hydro-meteorological time-series signals of the Tabriz and Urmia stations. The
remainder component is then used as the input for performing the MF-DFA analysis. Thus,
the MFDFA is invoked for investigating the multifractal properties of the different time
series, considering the moment orders varying between −4 and 4 to avoid any possible
bias [57]. The appropriate scaling range was chosen, which varies from 8 days to 900 days
(~L/10, where L is the signal length), and was found to be depicting the scaling regions
in most of the series, except wind velocity. The wind velocity series of both stations are
very complex in the characteristics that possess scaling ranges from 8 days to 256 days. The
fluctuation function plots of different variables are given in Figures 5 and 6, respectively,
for Tabriz and Urmia. Similarly, the GHE plots, mass exponent (Renyi exponent) plots, and
multifractal spectra (singularity spectra) are provided in Figure 7. The mass exponent plots
of the different variables of the two stations display good similarity.
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Figure 5. Fluctuation function plots of different variables at Tabriz station for (a) temperature, (b) pres-
sure, (c) relative humidity, (d) wind velocity, (e) solar radiation, and (f) reference evapotranspiration.
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Figure 6. Fluctuation function plots of different variables at Urmia station for (a) temperature, (b) pres-
sure, (c) relative humidity, (d) wind velocity, (e) solar radiation, and (f) reference evapotranspiration.
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Figure 7. Multifractal characteristics of hydro-meteorological variables at Tabriz and Urmia stations
for (a) temperature, (b) pressure, (c) relative humidity, (d) wind velocity, (e) solar radiation, and
(f) reference evapotranspiration. The upper panels show the GHE plots, middle panels show the
Renyi exponent plots, and the lower panels show the singularity spectrum.

From the GHE plots in Figure 7, it is noted that there exists a q-dependent relation
between the scaling exponents of the different hydro-meteorological variables at both
stations, by which we infer the multifractality of the time series. One can notice that the
scaling exponents of the different variables of Urmia station are more than those of Tabriz
station, even though the GHE plots of the temperatures and pressures of the stations are
much closer. The Renyi exponent plots of all the variables for both stations are very close
to each other. The multifractal spectra of the temperatures and pressures of both stations
display good similarity. The spectra of the remaining variables of Urmia station display
a rightward shift when compared to those of Tabriz station. The prominent multifractal
properties such as Hurst exponent (H), spectral width (W), spread of GHE (∆h(q)), spread
of singularity spectrum (∆f(α)), asymmetry index (R), and singularity exponent (α0) are
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computed for all-time series of both stations. The values of these properties are summarized
in Table 2.

Table 2. Multifractal properties of different hydro-meteorological variables of the Tabriz and Urmia
stations.

Station Variable H W R ∆f(α) ∆h(q) α0

Tabriz

Temperature (T) 0.818 0.298 0.296 0.192 0.149 0.845
Pressure (P) 0.601 0.366 0.237 0.170 0.207 0.646

Relative Humidity (RH) 0.754 0.213 0.495 0.239 0.107 0.771
Wind Velocity (WV) 0.607 0.430 0.346 0.318 0.230 0.651
Solar Radiation (SR) 0.845 0.438 0.445 0.340 0.244 0.883

Reference Evapotranspiration (ET0) 0.746 0.735 0.487 0.600 0.430 0.810

Urmia

Temperature (T) 0.821 0.331 0.341 0.231 0.182 0.856
Pressure (P) 0.619 0.374 0.157 0.097 0.213 0.666

Relative Humidity (RH) 0.785 0.276 0.247 0.137 0.146 0.814
Wind Velocity (WV) 0.659 0.274 0.146 0.075 0.166 0.700
Solar Radiation (SR) 0.960 0.451 0.073 0.030 0.240 0.991

Reference Evapotranspiration (ET0) 0.857 0.927 0.686 0.870 0.607 0.919

From Table 2, it is noted that all hydro-meteorological variables of both stations pre-
serve long memory persistence (H > 0.5), with the lowest values for pressure and wind
velocity, by which we infer the difficulties in the predictability of these series. The solar
radiation time series shows the highest persistence and, as a result, the highest predictabil-
ity, which is an expected outcome. Since the Hurst exponent measures the dependence of
present values on past values, H is considered as an indicator of the predictability of the se-
ries. In other words, if a time series has persistence (as indicated by a Hurst exponent value
greater than 0.5), it is also predictable [58]. Research conducted by various scholars has
shown that the term “persistence” can be used as a criterion for assessing predictability, and
the concepts of memory and predictability, as measures of persistence, are analogous [59].
Some of the researchers defined the predictability index [60] as PI = 2|D− 1.5|, where D is
the fractal dimension defined as D = 2 − H [6]. The values of PI and the fractal dimension
computed from H are given in Table 3. Table 3 indicates that the PI values of wind velocity
and pressure are the lowest for both stations.

Table 3. Fractal dimension and predictability index for the different variables.

Station Variable D PI

Tabriz

T 1.182 0.636
P 1.399 0.202

RH 1.246 0.508
WV 1.393 0.214
SR 1.155 0.690

ET0 1.254 0.492

Urmia

T 1.179 0.642
P 1.381 0.238

RH 1.215 0.570
WV 1.341 0.318
SR 1.040 0.920

ET0 1.143 0.714

Few researchers have showcased the use of H as a predictability measure [58–62].
According to some of these researchers, for a time series to be considered predictable,
not only the complete time series but also different sub-series should have H-values
significantly higher than 0.5 [58]. In the presence of self-similar behavior, apart from the
full-length time series, if the sub-series are also maintaining good persistence, they are
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considered to be predicable. To confirm this, an analysis was conducted by dividing all-time
series into four sub-series with a length of L/4. This approach ensures that enough data
points are preserved and helps to avoid any potential inconsistencies in the results during
MFDFA application. Table 4 presents the results of the persistence of various sub-series for
the different variables.

Table 4. Persistence of the total time series and the different sub-series for all variables (CL: complete
length; FH: first half; SH: second half; FQ: first quarter; SQ: second quarter; TQ: third quarter; FQ:
fourth quarter; FRQ: first three quarter; LTQ: last three quarter).

Station Variable CL FH SH MH FQ SQ TQ FRQ FTQ LTQ

Tabriz T 0.818 0.800 0.867 0.828 0.856 0.782 0.904 0.876 0.813 0.829
P 0.601 0.639 0.644 0.629 0.720 0.678 0.682 0.664 0.617 0.608

RH 0.754 0.717 0.815 0.785 0.740 0.736 0.871 0.815 0.758 0.779
WV 0.607 0.639 0.582 0.591 0.622 0.580 0.605 0.556 0.643 0.573
SR 0.845 0.908 0.815 0.908 0.888 0.878 0.893 0.690 0.895 0.848

ET0 0.746 0.763 0.768 0.783 0.743 0.741 0.797 0.793 0.760 0.769

Urmia T 0.821 0.804 0.883 0.844 0.874 0.798 0.910 0.889 0.822 0.837
P 0.619 0.643 0.661 0.638 0.732 0.650 0.702 0.683 0.630 0.628

RH 0.785 0.786 0.826 0.802 0.797 0.759 0.843 0.837 0.797 0.808
WV 0.659 0.624 0.722 0.610 0.681 0.534 0.617 0.750 0.679 0.691
SR 0.960 0.994 0.967 0.991 0.922 0.999 0.990 0.877 0.996 0.977

ET0 0.857 0.860 0.868 0.868 0.814 0.782 0.833 0.850 0.871 0.871

From Table 4, it is evident that both the complete time series and different sub-series of
various variables exhibit persistent behavior, with none of the cases falling below 0.5. This
clear indication of reasonably good predictability in the considered variables reinforces
the findings of this study. This indicates that the series is predictable. For both stations,
the spectral width, ∆h(q), ∆f(α), of the ETo time series is largest when compared with the
values of the respective properties of the remaining variables, by which we infer that the
highest multifractality is for the ETo time series when compared to the other variables.
The values of the singularity exponent matches well with those of the Hurst exponent for
all variables (giving an overall correlation of about 0.99 for both stations), supporting the
association between the two dominant multifractal properties of the temperature datasets.
The singularity spectra of all-time series (of both stations) are found to be left skewed
(positive value of R), which indicates a high probability of high fluctuations.

4.2. Cause of Multifractality

Determining the reason for multifractality is one of the important steps in multifractal
studies. Two of the major reasons behind multifractality are (i) long-range correlations
and (ii) the fatness (spreadness) of the probability density function (PDF). In this work, the
shuffling processes were followed to find the origins of the multifractality. The shuffling
process destroys any long-range correlation in the series but will retain the same probability
distribution. To quantify the effect of the broadness of the PDF, a surrogate (SU) series de-
veloped from the original series is used. If the multifractal character is due to a correlation
property, the h(q) of the shuffled (SH) series will be reduced to 0.5. If it is due to the spread-
ness of the PDF, the h(q) obtained for the surrogate series will show q-independency [63].
If both the long-range temporal correlations and broadness of the PDFs are leading to
multifractality, both the SH and SU series will show lower multifractal strength than the
original series. The details of random shuffling and the steps for generating SU series by
the iterative amplitude-adjusted Fourier transform (IAAFT) algorithm can be found in the
literature [64]. The comparison of the GHE plots of the original, SH, and SU series will help
to find the origins of the multifractal behavior. The GHE plots of the original, SH, and SU
series of all datasets of the Tabriz and Urmia stations are presented in Figure 8.
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Figure 8. Generalized Hurst exponentplots of original, SHand SU time series of different hydro-
meteorological variables at Tabriz and Urmia stations for (a) temperature, (b) pressure, (c) relative
humidity, (d) wind velocity, (e) solar radiation, and (f) reference evapotranspiration. The upper
panels show the plots of Tabriz station, and the lower panels show the plots of Urmia station.

Overall, from Figure 8, it is noted that, for all variables, there is an overall reduction
in h(q) values of the SH and SU series, which implies that the multifractal behavior can
be attributed to both the long-range correlations and fatness of the PDF. It is noticed that
multifractality is not fully destroyed by the SU scheme. Also, the shuffling operation
has reduced the GHE values to close to 0.5, exhibiting the dominant role of the temporal
correlation in the multifractality of the series. The statistics of GHE values of the original,
SR, and SU series, along with the ∆h(q) values, are presented in Table 5.Table 5 shows that
the H values of the shuffled series have been brought down to a value close to 0.5 with a
small SD (<0.03). Thus, it can be concluded that the multifractal behaviors of the different
series are dominated by temporal correlations.

Table 5. Statistics of the generalized Hurst exponent of the original, SH, and SU series of the different
datasets of the Tabriz and Urmia stations. SD is the standard deviation.

Variable Property
Tabriz Station Urmia Station

Original
Series

Shuffled
Series

Surrogate
Series

Original
Series

Shuffled
Series

Surrogate
Series

Temperature
Mean 0.856 0.501 0.790 0.871 0.506 0.855

SD 0.045 0.010 0.042 0.057 0.008 0.035
∆h(q) 0.149 0.033 0.140 0.182 0.027 0.121

Pressure
Mean 0.659 0.486 0.631 0.678 0.511 0.632

SD 0.065 0.008 0.033 0.067 0.012 0.048
∆h(q) 0.207 0.028 0.105 0.213 0.042 0.157

Relative Humidity
Mean 0.782 0.515 0.753 0.823 0.507 0.786

SD 0.033 0.008 0.031 0.045 0.003 0.016
∆h(q) 0.107 0.028 0.100 0.146 0.008 0.056

Wind Velocity
Mean 0.649 0.535 0.616 1.021 0.520 0.999

SD 0.059 0.010 0.018 0.073 0.011 0.012
∆h(q) 0.184 0.033 0.058 0.240 0.037 0.041

Solar Radiation
Mean 0.912 0.506 0.856 1.033 0.507 0.907

SD 0.078 0.016 0.003 0.210 0.013 0.003
∆h(q) 0.244 0.055 0.000 0.607 0.047 0.010

Reference
Evapotranspiration

Mean 0.864 0.517 0.764 0.708 0.494 0.716
SD 0.138 0.009 0.013 0.054 0.017 0.010

∆h(q) 0.430 0.033 0.047 0.166 0.057 0.034
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4.3. MEMD-MFDFA Approach for Fractality Detection

The proposed MEMD-MFDFA framework presented in Section 3.4 was invoked for
time-series reconstruction for eliminating the nondominated (short memory modes) along
with the Gaussian white noise expected in the high-frequency modes. The MEMD algorithm
was applied to the multivariate dataset comprising six variables including evapotranspi-
ration. The MEMD parameters of maximum threshold, minimum threshold, and fraction
of decomposition were set as 0.75, 0.075, and 0.5, respectively, considering 64 direction
vectors and following the guidelines given in past studies [49–51,65]. The decomposition
resulted in 11 IMFs and one final residue for all six-time series. Subsequently, the MFDFA
of each mode of each variable was performed, and the scaling exponent (value for q = 2)
was extracted. The threshold value of the scaling exponent was fixed at 0.5, considering the
classic categorization of long/short memory persistence of a time series [15]. The modes
withvalues of scaling exponents falling below 0.5 were considered to be short memory and,
therefore, were eliminated during the reconstruction process. The values of the scaling
exponents of the rotatory modes of the different time series for the Tabriz and Urmia
stations are presented in Figures 9 and 10, respectively. For all the time series of Urmia
station, the first five modes were found to be of short memory and were not considered
for reconstruction. Among the different time series of Tabriz station, the temperature and
ETo series for the first five modes were found to be of short memory, while for relative
humidity and solar radiation, the first six modes were found to be of short memory. For
the time series of pressure, the first four modes were found to be of short memory, while
for the wind velocity time series of Tabriz station, modes 2 to 5 were found to be short
memory. After eliminating the modes of short memory persistence, each time series was
reconstructed and MFDFA was performed. The results of MFDFA for the reconstructed
time series are presented in Table 6.
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Figure 9. Plots of scaling exponents (for q = 2) of the modes of different variables at Tabriz station
for (a) temperature, (b) pressure, (c) relative humidity, (d) wind velocity, (e) solar radiation, and
(f) reference evapotranspiration.
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Figure 10. Plots of scaling exponents of the modes of different variables at Urmia station for (a) tem-
perature, (b) pressure, (c) relative humidity, (d) wind velocity, (e) solar radiation, and (f) reference
evapotranspiration.

Table 6. Multifractal properties of reconstructed hydro-meteorological variables of Tabriz and Urmia
stations.

Station Variable H W R ∆f(α) ∆h(q) α0

Tabriz

Temperature 0.875 0.666 0.522 0.537 0.407 0.933
Pressure 0.662 0.584 0.345 0.340 0.343 0.726
Relative Humidity 0.943 0.756 0.471 0.510 0.480 0.919
Wind Velocity 0.884 0.322 0.196 0.102 0.168 0.914
Solar Radiation 0.922 0.992 0.629 0.578 0.369 0.966
Reference ET0 0.865 0.942 0.598 0.735 0.631 0.947

Urmia

Temperature 0.910 0.642 0.536 0.503 0.403 0.967
Pressure 0.871 0.897 0.506 0.601 0.577 0.952
Relative Humidity 0.947 0.811 0.485 0.544 0.518 0.927
Wind Velocity 0.998 0.471 0.279 0.218 0.253 0.997
Solar Radiation 0.987 0.825 0.522 0.529 0.519 0.948
Reference ET0 0.909 0.871 0.556 0.642 0.582 0.993

A comparison of the multifractal properties of the original series and reconstructed
series (Tables 2 and 4) show that the persistence and predictability of the different variables
increased after de-noising and reconstruction.

4.4. MFCCA of Meteorological Variables with Reference Evapotranspiration

The MFCCA algorithm was then employed for finding the relationship between
the different reconstructed meteorological variables with the ETo of both stations. The
persistence of individual series, joint persistence, correlations at different scales, and
multifractal spectra were determined for each case. The multifractal spectra and correlation
plots of different pairs of variables (such as T-ETo, P-ETo, RH-ETo, U-ETo, and SR-ETo) for
Tabriz station are presented in Figure 11, and the same for Urmia station are presented in
Figure 12.
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Figure 11. Multifractal spectra and cross-correlation plots obtained by MFCCA of different links
at Tabriz station for (a) temperature–ETo, (b) pressure–ETo, (c) relative humidity–ETo, (d) wind
velocity–ETo, and (e) solar radiation–ETo.
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Figure 12. Multifractal spectra and cross-correlation plots obtained by MFCCA of different links
at Urmia station for (a) temperature–ETo, (b) pressure–ETo, (c) relative humidity–ETo, (d) wind
velocity–ETo, and (e) solar radiation–ETo.

From Figures 11 and 12, it is noticed that the shape of the multifractal spectra of
different links are different for the two stations, while the spectra of the solar radiation
and ETo of Tabriz station shows good similarity. However, the patterns of correlations
for different links display similarity, even though the magnitudes of correlation differ.
At all-time scales, the association of T, U, and SR with ETo are positive, while RH-ETo
correlations are negative for both stations. It may be noted that P-ETo association for Tabriz
station is negative at all time scales, while at some intra-annual scales, the association is
weakly positive for Urmia station. Thus, MFCCA is successful in capturing such scale-
dependent changes in the nature of the associations between different candidate hydro-
climatic variables with ETo.

The cross-correlation coefficient (indicated as ρCCA in this paper) corresponding to
90 days is termed a seasonal cross-correlation coefficient and that corresponding to 365 days
is termed an annual cross-correlation coefficient. The seasonal, annual, and overall correla-
tions, along with the scaling exponent, spectral width (W), and R for different variables
with ETo, are provided in Table 7.
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Table 7. Results of MFCCA between different meteorological variables with ETo: x refers to the
meteorological variable; y refers to ETo;λ refers to scaling exponent;ρ refers to cross-correlation.

Station Link
Scaling Exponent Cross-Correlation Coefficient Spectral Width Asymmetry Index

λx λy λxy ρs ρa ρo Wx Wy Wxy Rx Ry Rxy

Tabriz

T-ETo 0.990 0.959 0.975 0.655 0.973 0.908 0.304 0.809 0.502 −0.014 −0.584 −0.483
P-ETo 0.693 0.959 0.826 −0.134 −0.715 −0.416 0.274 0.809 0.375 −0.055 −0.584 −0.448

RH-ETo 0.838 0.959 0.899 −0.476 −0.935 −0.748 0.240 0.809 0.477 −0.055 −0.584 −0.402
U-ETo 0.771 0.959 0.865 0.271 0.856 0.474 0.190 0.809 0.432 −0.273 −0.584 −0.505
SR-ETo 0.991 0.959 0.980 0.349 0.930 0.758 0.831 0.809 0.486 −0.523 −0.584 −0.435

Urmia

T-ETo 0.905 0.980 0.943 0.431 0.947 0.848 0.380 0.942 0.452 −0.039 −0.651 −0.476
P-ETo 0.706 0.980 0.843 −0.048 −0.688 −0.422 0.272 0.942 0.484 −0.084 −0.651 −0.501

RH-ETo 0.858 0.980 0.919 −0.338 −0.889 −0.636 0.229 0.942 0.554 −0.112 −0.651 −0.470
U-ETo 0.922 0.980 0.951 0.077 0.473 0.155 0.252 0.942 0.458 −0.052 −0.651 −0.574
SR-ETo 0.989 0.980 0.985 0.274 0.928 0.739 0.667 0.942 0.582 −0.393 −0.651 −0.517

From Table 7, it is noted that the combined scaling exponent (λxy) is nearly half of
the scaling exponent (λx and λy) of the individual series. This is in agreement with the
universal property on the persistence of time series by DCCA, proven by the researchers
considering the sunspot–streamflow linkages. The seasonal and annual correlations with
ETo were found to be positive for all variables except RH and P. In all links, the seasonal
scale correlations were weak, while the annual scale correlations were found to be strong
at both stations. The strongest annual scale correlations and overall correlations were
noted in the SR-ETo link and T-ETo link, which is a quite anticipated result on considering
the climatology of northwestern Iran. High multifractality was noted in the ETo series
of both stations (spectral widths of 0.809 and 0.942 for Tabriz and Urmia, respectively).
The multifractal spectra obtained for all combinations were right skewed, which was also
indicated by the negative value of the asymmetric index. This implies that the extreme
events play a prominent role in the temporal structure of the time series [27], indicating the
high probability of low fluctuations. This study performed the multifractal analysis of daily
reference ETo time series along with relevant meteorological variables affecting the process
of evapotranspiration. This study was performed for the two stations of Tabriz and Urmia
in northwestern Iran. The climatic processes of the region are controlled by the elevation
and presence of Lake Urmia, along with the large-scale global climatic oscillations [32].
Thus, the scale-dependent relation of the meteorological variables of the region with ETo
are controlled by these factors. Lake–atmosphere interactions create a complex coupled
system, in which feedback currents between them can shape and modify the local/global
climate conditions on Earth. As a hypersaline lake, Lake Urmia has impacts on its local
atmosphere (also on the global climate in the largescale), of which the most important ones
can be mentioned: like other great lakes, Lake Urmia (a) serves as a natural modulator
of temperature during the seasons, resulting in cooler summers and warmer winters,
(b) contributes to cloud formation, which helps adjust the Earth’s radiation equilibrium and
leads to a series of intricate feedback mechanisms in atmospheric circulation, ultimately
increasing precipitation and snowfall in the region, (c) reduces, by increasing the cloud
cover, the incoming atmospheric radiation to the Earth’s surface, and (d) plays a significant
role in wind formation by establishing a temperature gradient (the area surrounding a
lake is consistently warmer than the lake itself, as water reflects most of the solar radiation
back into the atmosphere, while land surfaces absorb more atmospheric radiation). In
addition (e), as the water level drops, it results in a decrease in the local relative humidity
and the lake breezes, as well as an increase in the temperature of and evaporation from the
surrounding terrain, leading to salty sandstorms. The presence of airborne dust, including
in salt and dust storms, poses risks of salinity for agriculture, adverse weather conditions
for human life, and atmospheric dimming. Dimmed weather reduces incoming radiation
and acts in a manner comparable to the greenhouse effect [66–72].
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Researchers in the region are conducting in-depth studies on hydroclimatic issues. One
specific task in this context is to determine which province (left or right) contributes more
to the problem from both natural and anthropogenic perspectives. The interactions among
the various parameters may have played a role in the fluctuation and nonlinear dynamic
characteristics of the climatic variables and ETo of the region. This made differences and
increased complexity, which is more evident in the series involving wind speed and surface
pressure at Urmia station. These insights into the nonlinear dynamic patterns are considered
valuable for enhancing the modeling of ETo and, consequently, for improving irrigation-
water management. Furthermore, the recent changes in hydro-climatic extremes may be
affecting the data characteristics, and to study their impact on fractality, it is recommended
that more recent and extended datasets be utilized. Employing datasets covering a longer
time span can aid in capturing the impact of evolving climate conditions on the ETo in any
region, given that the methodology presented is applicable across different contexts.

The differences in multifractal properties may provide useful insights for developing
prediction models of ETo, which are expected to display improved accuracy. The proposed
MEMD-MFDFA framework could be used as a potential tool for signal reconstruction,
and the knowledge of short or long memory persistence can be useful for improving the
predictability of the series. The mutual association of different reconstructed meteorological
variables with evapotranspiration was examined in a multifractal perspective through the
MFCCA, a recently proposed sign-preserved variant in the family of cross-correlation
algorithms. However, more experiments need to be solicited using the methods used in
the study by considering long and continuous hydro-meteorological datasets of different
climatic conditions. The knowledge gained from the study is to be extended for the predic-
tion of ETo or related variables, integrating with the potential of hybrid machine learning
or multifractal algorithms, in which, first, a decomposition-based data preprocessing can
be undertaken for capturing scale-based associations. Subsequently, the scale-dependent
modeling can be followed, and integration can be undertaken using machine learning
methods or multifractal models [52]. Also, the presented MEMD framework has potential
not only as a reconstruction tool but also opens the scope for performing scale-dependent
multifractal modeling, and studies in these directions are in the pipeline.

5. Conclusions

This study investigated the multifractal characteristics of hydro-meteorological datasets
of the Tabriz and Urmia stations of northwestern Iran using the MFDFA and MFCCA meth-
ods. MFDFA analysis showed that the daily reference evapotranspiration (ETo) and five
other meteorological variables (temperature, pressure, relative humidity, wind velocity,
and solar radiation) of both stations have multifractality and long memory persistence. The
ETo time series of both stations exhibited the highest multifractality, while pressure and
wind velocity exhibited the lowest persistence. The proposed MEMD-MFDFA coupled
framework is a promising approach for reconstructing a hydro-meteorological time series.
MFDFA analysis of the reconstructed signals highlighted an increase in persistence and
multifractality behaviors compared to the original time series. The knowledge on short or
long memory persistence gathered from the proposed framework can be used for improv-
ing the predictability of the series. The application of the MFCCA method could capture
the scale-dependent association of different meteorological parameters with ETo. It was
found that the joint persistence is nearly half of the persistence of the individual time series,
which reinforced the universal property in the multifractal cross-correlation studies. The
seasonal and annual cross-correlation properties displayed diversity in the strengths of
different pair-wise combinations of cross-correlation analysis, but they displayed similar
patterns for both stations. The knowledge gained from the study is helpful for developing
decomposition-aided hybrid modeling frameworks for ETo prediction, in which MEMD
can be used as a decomposition paradigm, and multifractal models can be used for the
predication of its components at different scales.
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Appendix A

The schematic view of the MFDFA algorithm is provided in Figure A1.
The Hurst exponent (h(q = 2)) may decipher the persistence of the signal, while the

deduced results, such as the Renyi exponent (τ(q)) and multifractal spectrum, may help to
decode the multifractal behavior of the signal. The multifractal exponents can be computed
as [17]:

τ(q) = qh(q)− 1 (A1)

α =
dτ(q)

dq
(A2)

and
f (α) = qα− τ(q) (A3)

The f (α) vs. α plot is called the multifractal spectrum and the support of the spectrum.
(∆α = αmax − αmin) shows the multifractal strength of the time series. The wider the

spectrum, the higher will be the strength of the multifractality [18]. For a multifractal
signal, the geometry of the plot will be a downward parabola that converges to a point for
a monofractal series. The asymmetry index (R) is deduced from the singularity spectrum to
indicate the fluctuation frequency:

R =
∆αL − ∆αR
∆αL + ∆αR

(A4)

where ∆αR = αmax− α0 and ∆αL = α0− αmin are the widths of the right and left limbs of the
spectrum, respectively, and α0 is the singularity exponent for q = 0 (known as the Holder
exponent), R ∈ [−1 1], and the positive value of this index represents the right-hand
deviation of the multifractal spectrum, indicating a high probability of high fluctuations.
The negative value of R shows that the series is characterized by localized low fluctuations.
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48. Wątorek, M.; Drożdż, S.; Oświęcimka, P.; Stanuszek, M. Multifractal cross-correlations between the world oil and other financial
markets in 2012–2017. Energy Econ. 2019, 81, 874–885. [CrossRef]

49. Rehman, N.; Mandic, D.P. Multivariate empirical mode decomposition. Proc. R. Soc. A 2011, 466, 1291–1302. [CrossRef]
50. Hu, W.; Si, B.-C. Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition.

Geoderma 2013, 193–194, 180–188. [CrossRef]
51. Huang, G.; Su, Y.; Kareem, A.; Liao, H. Time-frequency analysis of non-stationary process based on multivariate empirical mode

decomposition. J. Eng. Mech. 2016, 142, 04015065. [CrossRef]
52. Adarsh, S.; Sulaiman, S.; Murshida, K.K.; Nooramol, P. Scale-dependent prediction of reference evapotranspiration based on

Multivariate Empirical Mode Decomposition. Ain Shams Eng. J. 2018, 9, 1839–1848. [CrossRef]
53. Adarsh, S.; Janga Reddy, M. Multiscale characterization and prediction of reservoir inflows using MEMD-SLR Coupled Approach.

J. Hydrol. Eng. 2019, 24, 04018059. [CrossRef]
54. Ali, M.; Deo, R.C.; Maraseni, T.; Downs, N.J. Improving SPI-derived drought forecasts incorporating synoptic-scale climate

indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge
regression algorithms. J. Hydrol. 2019, 576, 164–184. [CrossRef]

55. Agana, N.A.; Homaifar, A. EMD-based predictive deep belief network for time series prediction: An application to drought
forecasting. Hydrology 2018, 5, 18. [CrossRef]

56. Cleveland, R.B.; Cleveland, W.S. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–33.
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