Temperature Evolution of Cooling Zones on Global Land Surface since the 1900s
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Mann–Kendall Rank Correlation Trend Test
3.2. Nonparametric Mann–Kendall Abrupt Change Detection
- Calculate the rank sequence of sequential time series Sk and calculate UFk.
- Calculate the rank sequence of inverse time series Sk and calculate UBk.
- Regarding the significance level, if α = 0.05, U0.05 = ±1.96; if α = 0.01, U0.01 = ±2.58.
3.3. Wavelet Analysis
3.4. Hurst Exponent
- To calculate the accumulated deviation:
- 2.
- To calculate the extreme value:
- 3.
- To calculate the standard deviation:
- 4.
- Introducing the dimensionless ratio into re-scale obtains
- 5.
- On both sides of the above natural logarithm, the following is available:
4. Results
4.1. Change Trends of Global Land Temperature
4.2. Spatial Distribution of Cooling Zones
4.3. Temperature Change Rates of Cooling Zones
4.4. Evolution of Temperatures in Cooling Zones
4.4.1. Significance
4.4.2. Abrupt Change Point
4.4.3. Periodicity
4.4.4. Future Trends
5. Discussion
5.1. Comparison with Previous Studies
5.2. Impact Factors and Climate Mechanisms
5.2.1. Ocean Currents
5.2.2. Atmospheric Circulation
5.2.3. Climate Impact Mechanisms on Land Surface
5.3. Limitations and Future Prospects
6. Conclusions
- There was amazing cooling; 8,305,500 km2 of land surface has shown a cooling trend since the 1900s, covering five continents and 32 countries, accounting for 86% of the land area in China, and distributed over 16 zones. The average global land surface warming rate was 0.93 °C/century, while the average cooling rate in the cooling zones was −0.24 °C/century. The maximum cooling rate was −1.40 °C/century, and it was 1.43 times the average rate of global land warming (0.98 °C/century).
- There was a slight difference in temperature change rates in each cooling zone, and the rates in nearly half of the cooling zones were slow. Abrupt change points were detected in all cooling zones, leading to alternating occurrences in time series of several significant heating zones and cooling zones.
- The cooling zones near the sea were greatly influenced by ocean currents and were mainly affected by a small time scale periodicity of less than 30 years, whereas the cold zones located relatively far from the sea and less affected by ocean currents were mainly affected by the medium time scales of more than 30 years.
- Eight cooling zones involving 2,684,900 km2 will show continuous cooling in the future, and the rest will probably warm up in 2114, 2041, 2096, 2099, 2119, 2073, 2048, and 2101, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.H.; Dai, X.S. Temperature variation in China during the last 100 years. Meteorol. Mon. 1994, 20, 19–26. (In Chinese) [Google Scholar]
- Peng, S.-S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.X.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Yang, J. Cooling Effect of Urban Trees on the Built Environment of Contiguous United States. Earth’s Future 2018, 6, 1066–1081. [Google Scholar] [CrossRef] [Green Version]
- Zeroual, A.; Assani, A.A.; Meddi, M.; Alkama, R. Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Clim. Dyn. 2018, 52, 227–243. [Google Scholar] [CrossRef]
- Li, C.; Bai, X.; Tan, Q.; Luo, G.; Wu, L.; Chen, F.; Xi, H.; Luo, X.; Ran, C.; Chen, H.; et al. High-resolution mapping of the global silicate weathering carbon sink and its long-term changes. Glob. Chang. Biol. 2022, 28, 4377–4394. [Google Scholar] [CrossRef]
- Xiong, L.; Bai, X.Y.; Zhao, C.W.; Li, Y.B.; Tan, Q.; Luo, G.J.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. High-resolution datasets for global carbonate and silicate rock weathering carbon sinks and their change trends. Earth’s Future 2022, 10, e2022EF002746. [Google Scholar] [CrossRef]
- Xiao, B.Q.; Bai, X.Y.; Zhao, C.W.; Tan, Q.; Li, Y.B.; Luo, G.J.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Responses of carbon and water use efficiencies to climate and land use changes in China’s karst areas. J. Hydrol. 2023, 617, 128968. [Google Scholar] [CrossRef]
- Ran, C.; Bai, X.; Tan, Q.; Luo, G.; Cao, Y.; Wu, L.; Chen, F.; Li, C.; Luo, X.; Liu, M.; et al. Threat of soil formation rate to health of karst ecosystem. Sci. Total. Environ. 2023, 887, 163911. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Smith, P.; Bai, X.; Tan, Q.; Luo, G.; Li, Q.; Wang, J.; Wu, L.; Chen, F.; Deng, Y.; et al. Effects of carbonate minerals and exogenous acids on carbon flux from the chemical weathering of granite and basalt. Glob. Planet. Chang. 2023, 221, e104053. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, S.; Li, C.; Xiong, L.; Song, F.; Du, C.; Li, M.; Luo, Q.; Xue, Y.; Wang, S. A carbon-neutrality-capacity index for evaluating carbon sink contributions. Environ. Sci. Ecotechnol. 2023, 15, 100237. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Wang, J.; Li, Q.; Wu, L.; Chen, F.; Li, C.; et al. Global CO2 Consumption by Silicate Rock Chemical Weathering: Its Past and Future. Earth’s Future 2021, 9, e2020EF001938. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Tian, Y.; Luo, G.; Wang, J.; Li, Q.; Chen, F.; Deng, Y.; Yang, Y.; et al. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecol. Indic. 2020, 115, 106392. [Google Scholar] [CrossRef]
- Wu, L.; Chen, D.; Yang, D.; Luo, G.; Wang, J.; Chen, F. Response of Runoff Change to Extreme Climate Evolution in a Typical Watershed of Karst Trough Valley, SW China. Atmosphere 2023, 14, 927. [Google Scholar] [CrossRef]
- Shen, W.F.; Miou, Q.L.; Wei, T.X.; Kong, C.C. Analysis of temperature variation in recent 130 years in central asia. J. Arid Meteorol. 2013, 31, 32–36. [Google Scholar]
- Loarie, S.R.; Lobell, D.B.; Asner, G.P.; Mu, Q.; Field, C.B. Direct impacts on local climate of sugar-cane expansion in Brazil. Nat. Clim. Chang. 2011, 1, 105–109. [Google Scholar] [CrossRef]
- Mueller, N.D.; Butler, E.E.; Mckinnon, K.A.; Rhines, A.; Tingley, M.; Holbrook, N.M.; Huybers, P. Cooling of us Midwest summer temperature extremes from cropland intensification. Nat. Clim. Chang. 2016, 6, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Randerson, J.T.; Canadell, J.G.; Anderson, R.G.; Avissar, R.; Baldocchi, D.D.; Bonan, G.B.; Caldeira, K.; Diffenbaugh, N.S.; Field, C.B. Protecting climate with forests. Environ. Res. Lett. 2008, 3, 269. [Google Scholar] [CrossRef]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, V.K.; Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 2011, 4, 514–518. [Google Scholar] [CrossRef]
- Kingwell, R.S. Climate change in Australia: Agricultural impacts and adaptation. Australas. Agribus. Rev. 2006, 14, 1–29. [Google Scholar]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.; Ferlicoq, M.; et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef]
- Betts, A.K.; Desjardins, R.L.; Worth, D. Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agric. For. Meteorol. 2007, 142, 156–169. [Google Scholar] [CrossRef]
- Montenegro, A.; Eby, M.; Mu, Q.; Mulligan, M.; Weaver, A.J.; Wiebe, E.C.; Zhao, M. The net carbon drawdown of small scale afforestation from satellite observations. Glob. Planet. Chang. 2009, 69, 195–204. [Google Scholar] [CrossRef]
- Davin, E.L.; Nobletducoudré, N.D. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Clim. 2009, 23, 97. [Google Scholar] [CrossRef]
- Zhang, M.; Lee, X.; Yu, G.; Han, S.; Wang, H.; Yan, J.; Zhang, Y.; Li, Y.; Ohta, T.; Hirano, T.; et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. 2014, 9, 034002. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.L.; Shi, Y.J.; Wang, J.S.; Zhang, Y.; Wang, S.G. An overview of temperature variation on the Qinghai-Tibetan plateau in the hundred years using UK CRU high resolution grid data. J. Lanzhou Univ. 2012, 48, 63–68. (In Chinese) [Google Scholar]
- Wen, X.Y.; Wu, W.S.; Hong, Z.J.; David, V. An Overview of China Climate Change over the 20th Century Using UK UEA/CRU High Resolution Grid Data. Chin. J. Atmos. Sci. 2006, 30, 894–904. [Google Scholar]
- Miao, C.; Ni, J.; Borthwick, A.G. Recent changes of water discharge andsediment load in the Yellow River basin, China. Prog. Phys. Geog. 2010, 34, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Xu, X.; Xu, C.; Liu, M.; Wang, K.; Yi, R. Monthly sediment discharge changes and estimates in a typical karst catchment of southwest China. J. Hydrol. 2017, 555, 95–107. [Google Scholar] [CrossRef]
- Tian, Y.; Bai, X.; Wang, S.; Qin, L.; Li, Y. Spatial-temporal changes of vegetation cover in Guizhou Province, Southern China. Chin. Geogr. Sci. 2017, 27, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Deng, J.; Chai, X.; Mu, X.; Zhao, G.; Shao, H.; Sun, W. Dynamic sediment discharge in the Hekou–Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pingale, S.M.; Khare, D.; Jat, M.K.; Adamowski, J. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos. Res. 2013, 138, 73–90. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Gao, J.; Xu, X.; Wang, C.; Tang, D.; Wang, T.; Wu, X. Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River, China. Sci. Total. Environ. 2015, 536, 803–812. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, J.; Wang, J.; Li, R.; Hao, P.; Zhan, H. How does the anthropogenic activity affect the spring discharge? J. Hydrol. 2016, 540, 1053–1065. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Wu, L.H.; Wang, S.J.; Bai, X.Y.; Luo, W.J.; Tian, Y.C.; Zeng, C.; Luo, G.; He, S. Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China. Sci. Total Environ. 2017, s601–s602, 1449–1465. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate change 2007: The physical science basis. Contributions of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Comput. Geom. 2007, 18, 95–123. [Google Scholar]
- Allen, S.K.; Plattner, G.K.; Nauels, A.; Xia, Y.; Stocker, T.F. Climate change 2013: The physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC). Comput. Geom. 2013, 18, 95–123. [Google Scholar]
- Wheeler, T.; Von, B.J. Climate change impacts on global food security. Science. 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.; Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 2011, 6, 526–533. [Google Scholar]
- Yue, T.-X.; Zhao, N.; Ramsey, R.D.; Wang, C.-L.; Fan, Z.-M.; Chen, C.-F.; Lu, Y.-M.; Li, B.-L. Climate change trend in China, with improved accuracy. Clim. Chang. 2013, 120, 137–151. [Google Scholar] [CrossRef]
- You, W.H.; Duan, X.; Deng, Z.W.; Wu, C.B. The multihierarchical structure and the jumpfeatures of climate changes for the globe, China and Yunnan during the last one hundred years. J. Trop. Meteorol. 1998, 14, 174–180. [Google Scholar]
- Serreze, M.C.; Carse, F.; Barry, R.G.; Rogers, J.C. Icelandic Low Cyclone Activity: Climatological Features, Linkages with the NAO, and Relationships with Recent Changes in the Northern Hemisphere Circulation. J. Clim. 1997, 10, 453–464. [Google Scholar] [CrossRef]
- Wanng, X.J.; Fang, Z.F. Surface air temperature in China and its relation to Arctic oscillation index. Plateau Meteorol. 2004, 23, 80–88. (In Chinese) [Google Scholar]
- Wang, L.; Gong, H.N.; Lan, X.Q. Interdecadal variation of the Arctic Oscillation and its influences on climate. J. Atmos. Sci. 2021, 44, 50–60. (In Chinese) [Google Scholar]
- Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Atmos. 2015, 116, 337–362. [Google Scholar] [CrossRef]
- Lutz, D.A.; Burakowski, E.A.; Murphy, M.B.; Borsuk, M.E.; Niemiec, R.M.; Howarth, R.B. Trade-offs between three forest ecosystem services across the state of New Hampshire, USA: Timber, carbon, and albedo. Ecol. Appl. Publ. Ecol. Soc. Am. 2016, 26, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liang, W.; Fu, B.; Lü, Y.; Fu, S.; Wang, S.; Su, H. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total. Environ. 2016, 569–570, 1032–1039. [Google Scholar] [CrossRef]
- Tang, S.; Vlug, A.; Piao, S.; Li, F.; Wang, T.; Krinner, G.; Li, L.Z.X.; Wang, X.; Wu, G.; Li, Y.; et al. Regional and tele-connected impacts of the Tibetan Plateau surface darkening. Nat. Commun. 2023, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.R.; Marengo, J.A. Uncertainty assessments of climate change projections over South America. Theor. Appl. Climatol. 2013, 112, 253–272. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, G.; Wu, Z.; Jin, Y.; Yu, P.; Zhou, D. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res. Atmos. 2014, 119, 13163–13179. [Google Scholar] [CrossRef]
- Wang, H.; Zang, F.; Zhao, C.; Liu, C. A GWR downscaling method to reconstruct high-resolution precipitation dataset based on GSMaP-Gauge data: A case study in the Qilian Mountains, Northwest China. Sci. Total Environ. 2022, 810, 152066. [Google Scholar] [CrossRef]
Station | R | VC | VM | Time | Station | R | VC | VM | Time |
---|---|---|---|---|---|---|---|---|---|
Guiyang | 0.75 | −0.0015 | −0.0106 | 1951–2012 | Guiping | 0.82 | 0.0063 | 0.0140 | 1953–2012 |
Dushan | 0.52 | 0.0044 | 0.0080 | 1951–2012 | Wuzhou | 0.88 | 0.0073 | 0.0075 | 1951–2012 |
Nanning | 0.96 | 0.0029 | 0.0046 | 1951–2012 | Mengshan | 0.89 | 0.0091 | 0.0088 | 1954–2012 |
Anshun | 0.69 | 0.0064 | 0.0053 | 1951–2012 | Hexian | 0.89 | 0.0107 | 0.0130 | 1957–2012 |
Baise | 0.54 | 0.0095 | 0.0002 | 1951–2012 | Jingxi | 0.82 | 0.0142 | 0.0158 | 1957–2012 |
Yibin | 0.75 | 0.0038 | 0.0054 | 1951–2012 | Lingshan | 0.71 | 0.0074 | 0.0158 | 1957–2012 |
Zhaotong | 0.71 | 0.0056 | 0.0105 | 1951–2012 | Dongxing | 0.64 | 0.0053 | 0.0182 | 1954–2012 |
Weining | 0.67 | 0.0084 | 0.0117 | 1951–2012 | Beihai | 0.88 | 0.0096 | 0.0089 | 1953–2012 |
Longzhou | 0.84 | 0.0082 | 0.0115 | 1953–2012 | Weizhoudao | 0.88 | 0.0118 | 0.0103 | 1956–2012 |
Ziyang | 0.65 | 0.0089 | 0.0137 | 1958–2012 | Liuzhou | 0.83 | 0.0103 | 0.0175 | 1951–2012 |
Laibin | 0.74 | 0.0081 | 0.0123 | 1957–2012 | Liangping | 0.81 | 0.0078 | 0.0059 | 1952–2012 |
Napo | 0.91 | 0.0164 | 0.0137 | 1958–2012 | Peiling | 0.77 | 0.0032 | 0.0013 | 1953–2012 |
Sinan | 0.82 | 0.0038 | 0.0063 | 1951–2012 | Shapingba | 0.77 | 0.0026 | 0.0076 | 1951–2012 |
Tongren | 0.87 | 0.0008 | 0.0167 | 1951–2012 | Neijiang | 0.90 | 0.0032 | 0.0025 | 1951–2001 |
Kaili | 0.55 | 0.0020 | 0.0076 | 1958–2012 | Xuyong | 0.71 | 0.0026 | 0.0045 | 1958–2012 |
Sansui | 0.83 | 0.0066 | 0.0095 | 1958–2012 | Suining | 0.87 | 0.0034 | 0.0008 | 1951–2012 |
Xingyi | 0.51 | 0.0137 | 0.0105 | 1951–2012 | Nanchong | 0.70 | 0.0059 | 0.0011 | 1951–2012 |
Rongjiang | 0.71 | 0.0092 | 0.0110 | 1954–2012 | Zhaojue | 0.83 | 0.0105 | 0.0083 | 1957–2012 |
Rongan | 0.84 | 0.0100 | 0.0131 | 1957–2012 | Xichang | 0.95 | 0.0069 | 0.0091 | 1951–2012 |
Guilin | 0.88 | 0.0066 | 0.0095 | 1951–2012 | Huili | 0.76 | 0.0188 | 0.0041 | 1953–2012 |
Fengshan | 0.81 | 0.0090 | 0.0053 | 1958–2012 | Yuling | 0.75 | 0.0066 | 0.0137 | 1954–2012 |
Duan | 0.63 | 0.0045 | 0.0063 | 1953–2012 | Huize | 0.79 | 0.0205 | 0.0158 | 1953–2012 |
Grade | H | Strength | |
---|---|---|---|
Positive Correlation | Negative Correlation | ||
I | 0.50 < H ≤ 0.55 | 0.45 < H ≤0.50 | Weak |
II | 0.55 < H ≤ 0.65 | 0.35 < H ≤ 0.45 | Weaker |
III | 0.65 < H ≤ 0.75 | 0.25 < H ≤ 0.35 | Stronger |
IV | 0.75 < H ≤ 0.85 | 0.15 < H ≤ 0.25 | Strong |
V | 0.85 < H ≤ 1 | 0 < H ≤ 0.15 | Very strong |
Cooling Zone | Position | Count | Region |
---|---|---|---|
NENA | Northeast of North America | 1 | Canada (East Nunavut (Iqaluit)) |
SUS | South United States | 24 | Mexico (southwest Nuevo Leon, south Coahuila, north San Luis Potosí, northeast Zacatecas), America (south and northeast Texas, Louisiana, northwest Colorado, Oklahoma, Arkansas, Mississippi, north Nebraska, west Iowa, northwest Missouri, west and southwest Lino, northeast Indiana, Tennessee, Alabama, Georgia, South Carolina, North Carolina, Kentucky, southwest Pennsylvania, east New Mexico, Ohio) |
NWSA | Northwest of South America | 22 | Colombia (Amazonas, Caquetá, Putumayo, Vaupés, south Guaviare, Nariño, Cauca, Huila, Valle Del Cauca, Tolima, Quindío, Risaralda, Caldas, southwest Meta, west Antioquia, south and central Choco), Peru (Loreto, north Amazonas), Brazil (northwest of Acre, southwest Amazonas), Ecuador |
NEB | Northeast Brazil | 4 | Brazil (Ceará, north Rio Grande do Norte, west Pernambuco, central Piauí) |
WSA | West of South America | 14 | Argentina (Salta, Catamarca, Jujuy, Tucumán, Santiago—north of Del Estero, northwest of Chaco, northwest Formosa), Chile (Antofagasta, north Copiapó, Iquique), Paraguay (Alto Paraguay), Brazil (Rondônia), Peru (southeast Puno), Bolivia |
SSA | South of South America | 6 | Argentina (southwest Buenos Aires, east La Pampa, south Córdoba, northeast Río Negro, San Luis, southern Santa Cruz) |
WAF | West Africa | 4 | Chile (Punta Arenas), Senegal (Dakar), Cape Verde, Sierra Leone, |
SEAF | Southeast Africa | 8 | Mozambique (Cabo Delgado, Nampula), Madagascar (Toliara (except the southwestern part)), Comoros, Mayotte, Juan De Nova Island, Glorioso Islands, Seychelles |
WAS | West Asia | 19 | Afghanistan (southeast Balkh, southeast Samangan, Baghlan, Parwan, Wardak, Kabul, Logar, Paktia, Khost, Nangarhar, Panjshir, Kapisa, Rugman), India (south Rajasthan, Punjab, Haryana, Delhi, Chandigarh), Pakistan (Central NWFP) |
TR | Turkey | 6 | Turkey (Agri, Erzurum, Kars, Mus, Van, Iğdir) |
XNC | Xining, China | 1 | China (east Qinghai (Xining)) |
SWC | Southwest China | 21 | China (southwest Chongqing (Jinjiang, Qijiang, Jiulongpo, Bishan, Nan’an, Dadukou), southeast Sichuan (Ziyang, Luzhou, Yibin), northeast Yunnan (Zhaotong), northwest and south Guizhou (Bijie, Zunyi, Guiyang, Anshun, Qiannan, southwest Guizhou), northwest and southwest Guangxi (Hechi, Nanning, Chongzuo, east Baise, west Laibin)) |
NESEA | Northwest SEA | 14 | Indonesia (Aceh, Sumatera Utara, Riau Archipelago), Malaysia (Kota Baba), Thailand (Krabi, Phang Nga, Trang, Phatthalung, Nakhon Si Thammarat), Burma (Bago, Irrawaddy, Yangon) |
PH | Philippines | 2 | Philippines (Luzon, Lingayen) |
NAU | North Australia | 3 | Indonesia (Maluku), Australia (Northern Territory, northeast of Western Australia) |
SEAU | Southeast Australia | 2 | Australia (central Victoria, northeast New South Wales) |
Continent | Cooling Zone | Percentage (%) | Area (Ten Thousand km2) | V (°C/Century) |
---|---|---|---|---|
North America | NENA SUS | 19.69 | 163.51 | 0.36 |
South America | NWSA NEB WSA SSA | 41.76 | 346.84 | 0.17 |
Africa | WAF SEAF | 11.11 | 92.28 | 0.21 |
Asia | WAS TR XNC SWC NESEA PH | 8.65 | 71.84 | 0.11 |
Oceania | NAU SEAU | 18.79 | 156.08 | 0.32 |
Cooling Zone | Z | Significance | Change Trend |
---|---|---|---|
NENA | −0.61 | N | Cooling |
SUS | −2.06 ** | Y | Cooling |
NWSA | −1.53 * | Y | Cooling |
NEB | −0.58 | N | Cooling |
WSA | −2.51 *** | Y | Cooling |
SSA | −1.72 ** | Y | Cooling |
WAF | −1.95 ** | Y | Cooling |
SEAF | −2.73 *** | Y | Cooling |
WAS | −0.84 | N | Cooling |
TR | −0.36 | N | Cooling |
XNC | −0.32 | N | Cooling |
SWC | −0.30 | N | Cooling |
NESEA | −1.90 ** | Y | Cooling |
PH | −0.02 | N | Cooling |
NAU | −2.32 *** | Y | Cooling |
SEAU | −2.08 ** | Y | Cooling |
Cooling Zone | Major Abrupt Point | Significant Abrupt Periods | |||
---|---|---|---|---|---|
α = 0.05 | α = 0.01 | ||||
Increasing | Declining | Increasing | Declining | ||
NENA | 1908 2006 | 1939–1989 | 1907–1908 | 1939–1989 | |
SUS | 1955 | 1910–1912 1934–1936 1937–1939 1955–1958 | 1976–2011 | 1978–2011 | |
NWSA | 1935 1992 | 1968–1971 | 1910–1912 1922–1931 1933–1936 | 1909–1912 1923–1926 1934–1936 | |
NEB | 1971 | 1958–1974 | 1962–1973 | ||
WSA | 1925 1950 | 1908–1928 1978–1997 1999–2012 | 1909–1926 1980–1987 1989–1994 2001–2005 2006–2012 | ||
SSA | 1930 | 1905–1909 1940–1943 1958–2009 | 1907–1908 1963–2007 | ||
WAF | 1916 | 1929–2012 | 1930–2010 | ||
SEAF | 1930 | 1950–2012 | 1951–2012 | ||
WAS | 1916 1938 1959 | 1996–2004 | 1997–2001 | ||
TR | 1987 | 1924–1927 | |||
XNC | 1918 | 1940–1967 | 1941–1962 | ||
SWC | 1908 | 1923–1961 | 1905–1906 | 1924–1959 | |
NESEA | 1932 | 1957–2012 | 1960–2012 | ||
PH | 1925 1968 1999 | 1939–1942 1951–1959 | 1953–1955 | ||
NAU | 1933 1985 1993 | 1915–1916 | 1946–1989 | 1947–1987 | |
SEAU | 1919 | 1908–1913 1934–1937 1951–2012 | 1909–1912 1954–2009 |
Cooling Zone | Oscillation Periods (Year) | Main Cycles (Year) | ||||
---|---|---|---|---|---|---|
Principal | Secondary | Third | Principal | Secondary | Third | |
NENA | 10–23 | 23–43 | 4–9 | 13 | 35 | 7 |
SUS | 20–39 | 6–12 | 40–64 | 30 | 9 | 45 |
NWSA | 20–50 | 35 | ||||
NEB | 33–64 | 11–23 | 4–11 | 49 | 19 | 8 |
WSA | 40–64 | 25–39 | 4–16 | 49 | 33 | 13 |
SSA | 18–30 | 31–64 | 10–18 | 22 | 47 | 13 |
WAF | 42–58 | 20–40 | 6–18 | 51 | 33 | 14 |
SEAF | 12–28 | 41–64 | 29–40 | 16 | 60 | 34 |
WAS | 40–64 | 18–38 | 7–16 | 53 | 23 | 11 |
TR | 17–56 | 6–9 | 9–17 | 32 | 7 | 12 |
XNC | 35–54 | 20–35 | 41 | 30 | ||
SWC | 20–35 | 9–20 | 4–9 | 29 | 10 | 7 |
NESEA | 12–20 | 21–31 | 6–11 | 16 | 25 | 8 |
PH | 21–32 | 16–21 | 28 | 18 | ||
NAU | 30–64 | 15–30 | 6–15 | 45 | 24 | 12 |
SEAU | 41–64 | 24–40 | 9–16 | 54 | 31 | 11 |
Cooling Zone | R2 | H | T | Historical Change | Future Change | |||
---|---|---|---|---|---|---|---|---|
Trend | End Year of Cooling | Grade | Strength | |||||
NENA | 0.97 | 0.83 | – | Cold | Cooling | – | IV | Strong |
SUS | 0.97 | 0.89 | 102 | Cold | Cooling | 2114 | V | Very strong |
NWSA | 0.99 | 0.65 | 29 | Cold | Cooling | 2041 | II | Weaker |
NEB | 0.99 | 0.80 | 84 | Cold | Cooling | 2096 | IV | Strong |
WSA | 0.99 | 0.66 | 87 | Cold | Cooling | 2099 | III | Stronger |
SSA | 1.00 | 0.73 | – | Cold | Cooling | – | III | Stronger |
WAF | 0.97 | 0.89 | – | Cold | Cooling | – | V | Very strong |
SEAF | 0.97 | 0.92 | – | Cold | Cooling | – | V | Very strong |
WAS | 1.00 | 0.68 | – | Cold | Cooling | – | III | Stronger |
TR | 0.96 | 0.64 | 107 | Cold | Cooling | 2119 | II | Weaker |
XNC | 0.98 | 0.69 | 61 | Cold | Cooling | 2073 | III | Stronger |
SWC | 0.98 | 0.87 | – | Cold | Cooling | – | V | Very strong |
NESEA | 0.98 | 0.92 | – | Cold | Cooling | – | V | Very strong |
PH | 0.96 | 0.66 | 36 | Cold | Cooling | 2048 | III | Stronger |
NAU | 1.00 | 0.74 | 89 | Cold | Cooling | 2101 | III | Stronger |
SEAU | 0.99 | 0.74 | – | Cold | Cooling | – | III | Stronger |
Cooling Zone | Seaward Position | Ocean Current | Climate Type |
---|---|---|---|
NENA | North/East | Labrador cold current | Temperate continental |
SUS | South/East | Subtropical monsoon, Monsoon humid climate | |
NWSA | West | Peru cold current | Tropical savanna, Tropical desert, Alpine, Tropical rainforest |
NEB | North | South equatorial warm drift | Tropical savanna, Tropical rainforest |
WSA | West | Peru cold current | Tropical desert, Subtropical monsoon, Monsoon humid, Temperate continental, Tropical monsoon, Tropical rainforest |
SSA | Southeast | Frandk cold current Peru cold current | Subtropical monsoon, Monsoon humid |
WAF | West/Southwest | Canary cold current Benguela cold current | Tropical rainforest |
SEAF | All directions | Mozambique warm current, Agulhas warm current | Tropical rainforest, Tropical savanna |
WAS | Southwest | Tropical monsoon, Temperate continental, Tropical desert, Alpine | |
TR | Northwest | Temperate continental | |
XNC | Temperate continental | ||
SWC | South | Subtropical monsoon, Monsoon humid | |
NESEA | West | East Australian warm current | Tropical rainforest |
PH | West | Japan warm current | Tropical monsoon |
NAU | North | East Australian warm current | Tropical desert, Tropical savanna |
SEAU | South/East | East Australian warm current | Subtropical monsoon, Monsoon humid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Bai, X.; Tian, Y.; Li, Y.; Luo, G.; Wang, J.; Chen, F. Temperature Evolution of Cooling Zones on Global Land Surface since the 1900s. Atmosphere 2023, 14, 1156. https://doi.org/10.3390/atmos14071156
Wu L, Bai X, Tian Y, Li Y, Luo G, Wang J, Chen F. Temperature Evolution of Cooling Zones on Global Land Surface since the 1900s. Atmosphere. 2023; 14(7):1156. https://doi.org/10.3390/atmos14071156
Chicago/Turabian StyleWu, Luhua, Xiaoyong Bai, Yichao Tian, Yue Li, Guangjie Luo, Jinfeng Wang, and Fei Chen. 2023. "Temperature Evolution of Cooling Zones on Global Land Surface since the 1900s" Atmosphere 14, no. 7: 1156. https://doi.org/10.3390/atmos14071156
APA StyleWu, L., Bai, X., Tian, Y., Li, Y., Luo, G., Wang, J., & Chen, F. (2023). Temperature Evolution of Cooling Zones on Global Land Surface since the 1900s. Atmosphere, 14(7), 1156. https://doi.org/10.3390/atmos14071156