NOAA’s Global Forecast System Data in the Cloud for Community Air Quality Modeling
Abstract
:1. Introduction
2. Data and Methodology
2.1. NOAA’s Global Forecast System (GFS) Version 16 Data
2.2. The NOAA-EPA Atmosphere Chemistry Coupler (NACC)
2.3. Amazon® Web Services HPC Cloud Platform and Configuration
2.3.1. Amazon® S3 for NOAA-to-AWS GFSv16 NetCDF Transfer and Storage
2.3.2. Amazon® FSx for Lustre to Connect S3 Storage and NACC-Cloud Computing
- Export output files from FSx to the S3 bucket;
- 2.
- Find and delete exported output files from FSx;
- 3.
- Release space used by input data files on FSx;
- 4.
- Delete “old” archived output data files on the S3 bucket.
2.3.3. AWS ParallelCluster-HPC Development for NACC-Cloud
2.3.4. NACC-Cloud Data Flow for User Download
2.4. Development of a Web-Based User Interface for NACC-Cloud
3. Results and Analysis
3.1. AWS-HPC Components and Scalability for NACC-Cloud
3.2. Running NACC-Cloud for CMAQ Applications
3.3. Assessment of NACC-Cloud Output Meteorological Fields
4. Conclusions and Path Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Version 4.3; NCAR: Boulder, CO, USA, 2019; p. 145. [Google Scholar] [CrossRef]
- The International GEOS-Chem User Community. Geoschem/GCClassic: GEOS-Chem Classic 14.0.2 (14.0.2). Zenodo 2022. [Google Scholar] [CrossRef]
- Zhuang, J.; Jacob, D.J.; Lin, H.; Lundgren, E.W.; Yantosca, R.M.; Gaya, J.F.; Sulprizio, M.P.; Eastham, S.D. Enabling high-performance cloud computing for Earth science modeling on over a thousand cores: Application to the GEOS-Chem atmospheric chemistry model. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002064. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.G.; Werner, K.K.; Gill, D.O.; Lin, Y.; Schumacher, R.S. Cloud Computing Efforts for the Weather Research and Forecasting Model. Bull. Am. Meteorol. Soc. 2021, 102, E1261–E1274. [Google Scholar] [CrossRef]
- Kang, D.; Eder, B.K.; Stein, A.F.; Grell, G.A.; Peckham, S.E.; McHenry, J. The New England Air Quality Forecasting Pilot Program: Development of an Evaluation Protocol and Performance Benchmark. J. Air Waste Manag. Assoc. 2005, 55, 1782–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eder, B.; Kang, D.; Mathur, R.; Yu, S.; Schere, K. An operational evaluation of the Eta-CMAQ air quality forecast model. Atmos. Environ. 2006, 40, 4894–4905. [Google Scholar] [CrossRef]
- Eder, B.; Kang, D.; Mathur, R.; Pleim, J.; Yu, S.; Otte, T.; Pouliot, G. A performance evaluation of the National Air Quality Forecast Capability for the summer of 2007. Atmos. Environ. 2009, 43, 2312–2320. [Google Scholar] [CrossRef]
- Stajner, I.; Davidson, P.; Byun, D.; McQueen, J.; Draxler, R.; Dickerson, P.; Meagher, J. US National Air Quality Forecast Capability: Expanding Coverage to Include Particulate Matter. In NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2011; pp. 379–384. [Google Scholar] [CrossRef]
- Lee, P.; McQueen, J.; Stajner, I.; Huang, J.; Pan, L.; Tong, D.; Kim, H.; Tang, Y.; Kondragunta, S.; Ruminski, M.; et al. NAQFC Developmental Forecast Guidance for Fine Particulate Matter (PM2.5). Weather. Forecast. 2017, 32, 343–360. [Google Scholar] [CrossRef]
- Campbell, P.C.; Tang, Y.; Lee, P.; Baker, B.; Tong, D.; Saylor, R.; Stein, A.; Huang, J.; Huang, H.-C.; Strobach, E.; et al. Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16. Geosci. Model Dev. 2022, 15, 3281–3313. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tallapragada, V.; Kain, J.S.; Wei, H.; Yang, R.; Yudin, V.A.; Moorthi, S.; Han, J.; Hou, Y.T.; Wang, J.; et al. Model Upgrade Plan and Initial Results from a Prototype NCEP Global Forecast System Version 16. In Proceedings of the 2020 AMS Conference, Boston, MA, USA, 15 January 2020; Available online: https://ams.confex.com/ams/2020Annual/webprogram/Paper362797.html (accessed on 6 April 2022).
- US EPA Office of Research and Development: CMAQ (Version 5.3.1). Zenodo 2019. [CrossRef]
- Appel, K.W.; Bash, J.O.; Fahey, K.M.; Foley, K.M.; Gilliam, R.C.; Hogrefe, C.; Hutzell, W.T.; Kang, D.; Mathur, R.; Murphy, B.N.; et al. The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: System updates and evaluation. Geosci. Model Dev. 2021, 14, 2867–2897. [Google Scholar] [CrossRef] [PubMed]
- Otte, T.L.; Pleim, J.E. The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: Updates through MCIPv3.4.1. Geosci. Model Dev. 2010, 3, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Campbell, P.C.; Lee, P.; Saylor, R.; Yang, F.; Baker, B.; Tong, D.; Stein, A.; Huang, J.; Huang, H.-C.; et al. Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): Comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign. Geosci. Model Dev. 2022, 15, 7977–7999. [Google Scholar] [CrossRef]
- Mathur, R.; Xing, J.; Napelenok, S.; Pleim, J.; Hogrefe, C.; Wong, D.; Gan, C.-M.; Kang, D. Multiscale modeling of multi-decadal trends in ozone and precursor species across the northern hemisphere and the United States. In Air Pollution Modeling and Its Application XXIV; Steyn, D., Chaumerliac, N., Eds.; Springer: Cham, Switzerland, 2016; pp. 239–243. ISBN 978-3-319-24476-1. [Google Scholar]
- Mathur, R.; Xing, J.; Gilliam, R.; Sarwar, G.; Hogrefe, C.; Pleim, J.; Pouliot, G.; Roselle, S.; Spero, T.L.; Wong, D.C.; et al. Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: Overview of process considerations and initial applications. Atmos. Chem. Phys. 2017, 17, 12449–12474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, R.; Kang, D.; Napelenok, S.; Xing, J.; Hogrefe, C. A Modeling Study of the Influence of Hemispheric Transport on Trends in O3 Distributions over North America. In Air Pollution Modeling and Its Application XXV; Mensink, C., Kallos, G., Eds.; Springer Proceedings in Complexity; Springer: Cham, Switzerland, 2018; pp. 13–18. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display System: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
Component | Option | Notes |
---|---|---|
Head Node—c5n.2xlarge | Reserved | 4 cores, 21 GB RAM, up to 25 Gbps network bandwidth |
Compute Nodes—r6i.32xlarge × 4 | On Demand | (1) each node: 96 cores, 1 TB RAM, 50 Gbps network bandwidth (2) assuming: 4 nodes, 4 h per day |
File system—Amazon® FSx for Lustre | - | 1200 GB |
Data input storage—Amazon® S3 Glacier Instant Retrieval | - | (1) GFSv16 data files: increase—200 GB/day, 6 TB/month, 72 TB/year (2) Monthly cost—should be accumulated from previous months |
Data output storage—Amazon® S3 Standard | - | Output for one run (one-month data as input): 3.5 GB, 35 GB/day, 1 TB/month |
End User Data download | - | Output for one run (one-month data as input): 3.5 GB, 35 GB/day, 1 TB/month |
Other resources | - | VPC, EBS, Elastic IP, |
AWS Support | - | 10% of monthly AWS usage. |
File Name | Format | Description |
---|---|---|
GRIDDESC | ASCII | Grid description file with coordinate and grid definition information |
GRID_BDY_2D | I/O API | Time-independent 2-D boundary meteorology file |
GRID_CRO_2D | I/O API | Time-independent 2-D cross-point meteorology file |
GRID_CRO_3D | I/O API | Time-independent 3-D cross-point meteorology file |
GRID_DOT_2D | I/O API | Time-independent 2-D dot-point meteorology file |
LUFRAC_CRO | I/O API | Time-independent fractional land use by category |
MET_BDY_3D | I/O API | Time-varying 3-D boundary meteorology file |
MET_CRO_2D | I/O API | Time-varying 2-D cross-point meteorology file |
MET_CRO_3D | I/O API | Time-varying 3-D cross-point meteorology file |
MET_DOT_3D | I/O API | Time-varying 3-D dot-point meteorology file |
SOI_CRO | I/O API | Time-varying soil properties in each soil layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, P.C.; Jiang, W.; Moon, Z.; Zinn, S.; Tang, Y. NOAA’s Global Forecast System Data in the Cloud for Community Air Quality Modeling. Atmosphere 2023, 14, 1110. https://doi.org/10.3390/atmos14071110
Campbell PC, Jiang W, Moon Z, Zinn S, Tang Y. NOAA’s Global Forecast System Data in the Cloud for Community Air Quality Modeling. Atmosphere. 2023; 14(7):1110. https://doi.org/10.3390/atmos14071110
Chicago/Turabian StyleCampbell, Patrick C., Weifeng (Rick) Jiang, Zachary Moon, Sonny Zinn, and Youhua Tang. 2023. "NOAA’s Global Forecast System Data in the Cloud for Community Air Quality Modeling" Atmosphere 14, no. 7: 1110. https://doi.org/10.3390/atmos14071110
APA StyleCampbell, P. C., Jiang, W., Moon, Z., Zinn, S., & Tang, Y. (2023). NOAA’s Global Forecast System Data in the Cloud for Community Air Quality Modeling. Atmosphere, 14(7), 1110. https://doi.org/10.3390/atmos14071110