Is There a Relationship between Increased Land-Use Intensity and the Rise in PM2.5 Pollution Levels in the Yangtze River Economic Belt, China (2000–2021)?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land-Use Intensity (LUI)
2.3.2. Mean Center Change
2.3.3. The Tapio Decoupling Model
3. Results
3.1. Spatial and Temporal Change Characteristics of PM2.5
3.1.1. PM2.5 Time Change Trend
3.1.2. Spatial Distribution Characteristics of PM2.5
3.1.3. Mean Center Change in PM2.5 and LUI
3.2. Spatial and Temporal Change Characteristics of LUI
3.2.1. LUI Time Change Trend
3.2.2. Spatial Distribution Characteristics of LUI
3.2.3. Decoupling Analysis of LUI and PM2.5
4. Discussion
4.1. From the Perspective of Economic Development Stages
4.2. From the Perspective of Policy Execution
5. Conclusions
- (1)
- During 2000–2021, the mean value of PM2.5 decreased by 11.77 μg/m3 from 39.91 μg/m3 to 28.14 μg/m3. The high values of PM2.5 were mainly distributed in the three major urban agglomerations, also including the whole areas of Jiangsu and Anhui. In contrast, low PM2.5 values were mainly distributed the Yunnan, Guizhou, and western Sichuan plateau areas with low population densities and relatively unconventional economic developments.
- (2)
- During 2000–2021, the PM2.5 centers moved in a northwestward direction, indicating that areas in this direction had high levels of air pollution. The central spatial trajectory of the LUI shifted southeast, indicating that a consistent trend in human activities such as urbanization and industrialization spread towards the southeast over time.
- (3)
- During 2000–2021, the mean value of the LUI increased from 3.73 to 3.92 by 0.19. The high values of the LUI were primarily concentrated in three major urban agglomerations, as well as the entire regions of Jiangsu and Anhui. In contrast, low LUI values were mainly located in western Sichuan, Yunnan, Guizhou, western Hubei, and other areas with many mountain ranges, uneven terrains, and inconvenient transportation systems.
- (4)
- During 2000–2021, the desired levels of decoupling between LUI and PM2.5 were classified into two types in most regions of YREB: strong negative decoupling and negative decoupling. These accounted for 71.12% and 24.86%, respectively, indicating rapid urbanization and industrialization in most regions, along with a significant decrease in PM2.5.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Mahala, A. Processes and Status of Land Degradation in a Plateau Fringe Region of Tropical Environment. Environ. Process. 2017, 4, 663–682. [Google Scholar] [CrossRef]
- Baptista, S.R.; Rudel, T.K. A re-emerging Atlantic forest? Urbanization, industrialization and the forest transition in Santa Catarina, southern Brazil. Environ. Conserv. 2006, 33, 195–202. [Google Scholar] [CrossRef]
- Wang, S.-L.; Xu, X.-R.; Sun, Y.-X.; Liu, J.-L.; Li, H.-B. Heavy metal pollution in coastal areas of South China: A review. Mar. Pollut. Bull. 2013, 76, 7–15. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W. City as a major source area of fine particulate (PM2.5) in China. Environ. Pollut. 2015, 206, 183–187. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef]
- Bodor, K.; Szép, R.; Bodor, Z. The human health risk assessment of particulate air pollution (PM2.5 and PM10) in Romania. Toxicol. Rep. 2022, 9, 556–562. [Google Scholar] [CrossRef]
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Huang, W.; Deng, W.; Jia, C. Spatial Patterns, Drivers and Heterogeneous Effects of PM2.5: Experience from China. Pol. J. Environ. Stud. 2022, 31, 5633–5647. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, L.; Wang, X. Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China. J. Geogr. Sci. 2021, 31, 878–898. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Yang, F.; Che, L.; Wang, B.; Sun, D. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015. J. Geogr. Sci. 2019, 29, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China—A case study from the Beijing-Tianjin-Hebei region. Atmos. Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Garbarienė, I.; Garbaras, A.; Masalaite, A.; Ceburnis, D.; Krugly, E.; Kauneliene, V.; Remeikis, V.; Martuzevicius, D. Identification of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas, Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis. Atmos. Environ. 2020, 237, 117673. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Yan, L.; Ding, W.; Liu, R.; Wang, H.; Wang, S. Analysis of Chemical Composition Characteristics and Source of PM2.5 under Different Pollution Degrees in Autumn and Winter of Liaocheng, China. Atmosphere 2021, 12, 1180. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Li, S.; Sun, H.; Mu, Z.; Zhang, L.; Li, Y.; Chen, Q. Study on the oxidation potential of the water-soluble components of ambient PM2.5 over Xi’an, China: Pollution levels, source apportionment and transport pathways. Environ. Int. 2020, 136, 105515. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Tang, A.; Yuan, H.; Sun, Y.; Chen, S.; Zheng, A. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Fu, X.; Wang, S.; Zhao, B.; Xing, J.; Cheng, Z.; Liu, H.; Hao, J. Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. Atmos. Environ. 2013, 70, 39–50. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, S.; Che, L.; Yu, Y. Analysis of temporal spatial distribution characteristics of PM2.5 pollution and the influential meteorological factors using Big Data in Harbin, China. J. Air Waste Manag. Assoc. 2021, 71, 964–973. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Z.; Wang, C.; Xue, K.; Liu, Y.; Fang, M.; Zuo, J.; Sheng, Y. Research on the Influence of Indoor Relative Humidity on PM2.5 Concentration in Residential Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2019, 585, 012086. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ni, Z.; Ni, L. Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Phys. A Stat. Mech. Appl. 2015, 438, 114–123. [Google Scholar] [CrossRef]
- Kanabkaew, T.; Mekbungwan, P.; Raksakietisak, S.; Kanchanasut, K. Detection of PM2.5 plume movement from IoT ground level monitoring data. Environ. Pollut. 2019, 252, 543–552. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Zhang, Y. Climate anomalies contributed to the rebound of PM2.5 in winter 2018 under intensified regional air pollution preventions. Sci. Total Environ. 2020, 726, 138514. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, T.; Bai, Y.; Kong, S.; Xiong, J.; Sun, X.; Yang, Q.; Gu, Y.; Lu, H. Importance of regional PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China: Observational analysis and WRF-Chem simulation. Sci. Total Environ. 2021, 758, 143710. [Google Scholar] [CrossRef]
- Lv, B.; Liu, Y.; Yu, P.; Zhang, B.; Bai, Y. Characterizations of PM2.5 Pollution Pathways and Sources Analysis in Four Large Cities in China. Aerosol Air Qual. Res. 2015, 15, 1836–1843. [Google Scholar] [CrossRef]
- Ding, H.; Liu, Y.; Yu, Z.; Cheung, C.; Zhan, J. Spatial and Temporal Characteristics and Main Contributing Regions of High PM2.5 Pollution in Hong Kong. Aerosol Air Qual. Res. 2017, 17, 2955–2965. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zeng, J.; Li, N. Change in land-use structure due to urbanisation in China. J. Clean. Prod. 2021, 321, 128986. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Pompe, S.; Hanspach, J.; Badeck, F.; Klotz, S.; Thuiller, W.; Kühn, I. Climate and land use change impacts on plant distributions in Germany. Biol. Lett. 2008, 4, 564–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Lu, D.; Mao, W.; Xiao, W.; Zhang, L. Non-Linear Response of PM2.5 Pollution to Land Use Change in China. Remote Sens. 2021, 13, 1612. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, W.; Zhang, S.; Peng, L.; Liu, Y. Impacts of urbanization on ecosystem services in the Chengdu-Chongqing Urban Agglomeration: Changes and trade-offs. Ecol. Indic. 2022, 139, 108920. [Google Scholar] [CrossRef]
- Yang, H.; Chen, W.; Liang, Z. Impact of Land Use on PM2.5 Pollution in a Representative City of Middle China. Int. J. Environ. Res. Public Health 2017, 14, 462. [Google Scholar] [CrossRef]
- Lu, D.; Xu, J.; Yue, W.; Mao, W.; Yang, D.; Wang, J. Response of PM2.5 pollution to land use in China. J. Clean. Prod. 2020, 244, 118741. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, C.; He, B.-J. Spatial and temporal heterogeneity of urban land area and PM2.5 concentration in China. Urban Clim. 2022, 45, 101268. [Google Scholar] [CrossRef]
- Lin, Y.; Yuan, X.; Zhai, T.; Wang, J. Effects of land-use patterns on PM2.5 in China’s developed coastal region: Exploration and solutions. Sci. Total Environ. 2020, 703, 135602. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zeng, Y. Effects of urban lake wetlands on the spatial and temporal distribution of air PM10 and PM2.5 in the spring in Wuhan. Urban For. Urban Green. 2018, 31, 142–156. [Google Scholar] [CrossRef]
- Xu, Z.; Niu, L.; Zhang, Z.; Hu, Q.; Zhang, D.; Huang, J.; Li, C. The impacts of land supply on PM2.5 concentration: Evidence from 292 cities in China from 2009 to 2017. J. Clean. Prod. 2022, 347, 131251. [Google Scholar] [CrossRef]
- Yuan, M.; Song, Y.; Huang, Y.; Shen, H.; Li, T. Exploring the association between the built environment and remotely sensed PM2.5 concentrations in urban areas. J. Clean. Prod. 2019, 220, 1014–1023. [Google Scholar] [CrossRef]
- Lu, D.; Mao, W.; Yang, D.; Zhao, J.; Xu, J. Effects of land use and landscape pattern on PM2.5 in Yangtze River Delta, China. Atmos. Pollut. Res. 2018, 9, 705–713. [Google Scholar] [CrossRef]
- Jiang, G.; Tian, Y.; Zhang, R.; Wu, S.; Chen, T. Assessing the effects of land use pattern change applying a spatially oriented indicator system framework. Habitat Int. 2022, 129, 102619. [Google Scholar] [CrossRef]
- Pontius, R.G.; Huang, J.; Jiang, W.; Khallaghi, S.; Lin, Y.; Liu, J.; Quan, B.; Ye, S. Rules to write mathematics to clarify metrics such as the land use dynamic degrees. Landsc. Ecol. 2017, 32, 2249–2260. [Google Scholar] [CrossRef]
- Liu, F.; Qin, T.; Girma, A.; Wang, H.; Weng, B.; Yu, Z.; Wang, Z. Dynamics of Land-Use and Vegetation Change Using NDVI and Transfer Matrix: A Case Study of the Huaihe River Basin. Pol. J. Environ. Stud. 2019, 28, 213–223. [Google Scholar] [CrossRef]
- Di, X.; Hou, X.; Wang, Y.; Wu, L. Spatial-temporal characteristics of land use intensity of coastal zone in China during 2000–2010. Chin. Geogr. Sci. 2015, 25, 51–61. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Gong, J.; Li, S. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Sci. Total Environ. 2018, 621, 18–29. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A. Improved 1 km resolution PM 2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2021. Earth Syst. Sci. Data 2022, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour 1997, 12, 105–111. [Google Scholar]
- Shen, F.; Yang, L.; Zhang, L.; Guo, M.; Huang, H.; Zhou, C. Quantifying the direct effects of long-term dynamic land use intensity on vegetation change and its interacted effects with economic development and climate change in jiangsu, China. J. Environ. Manag. 2023, 325, 116562. [Google Scholar] [CrossRef]
- Xia, C.; Dong, Z.; Wu, P.; Dong, F.; Fang, K.; Li, Q.; Li, X.; Shao, Z.; Yu, Z. How urban land-use intensity affected CO2 emissions at the county level: Influence and prediction. Ecol. Indic. 2022, 145, 109601. [Google Scholar] [CrossRef]
- Li, X.; Wu, K.; Yang, Q.; Hao, S.; Feng, Z.; Ma, J. Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015. Land Use Policy 2023, 125, 106505. [Google Scholar] [CrossRef]
- Chen, W.; Gu, T.; Fang, C.; Zeng, J. Global urban low-carbon transitions: Multiscale relationship between urban land and carbon emissions. Environ. Impact Assess. Rev. 2023, 100, 107076. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Z.; Niu, L. Identification and evolution of territorial space from the perspective of composite functions. Habitat Int. 2022, 128, 102662. [Google Scholar] [CrossRef]
- Billman, P.D.; Beever, E.A.; McWethy, D.B.; Thurman, L.L.; Wilson, K.C. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal. Glob. Chang. Biol. 2021, 27, 4498–4515. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Sun, J.; Zhang, M.; Su, B. Using the Tapio-Z decoupling model to evaluate the decoupling status of China’s CO2 emissions at provincial level and its dynamic trend. Struct. Chang. Econ. Dyn. 2020, 52, 120–129. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Zhao, X.; Shi, S.; Xu, L. Exploring the Relationship between the Eco-Environmental Quality and Urbanization by Utilizing Sentinel and Landsat Data: A Case Study of the Yellow River Basin. Remote Sens. 2023, 15, 743. [Google Scholar] [CrossRef]
- Shen, L. On the Execution of Public Policy: Problems and Solutions. Chin. Public Adm. 2009, 293, 41–44. Available online: http://gfgga60aabc7d15084b00spno06upp5nfo6oc9.fhaz.libproxy.ruc.edu.cn/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e75TZJapvoLK3CjGAgDfN5eNtmS6KV3p_WNQwpoSqt76k0HuPEO0x5y3_hxpp_WmcQ&uniplatform=NZKPT (accessed on 26 June 2023).
- Yang, H. Public Policy Studies; Renmin University of China Press: Beijing, China, 2020. [Google Scholar]
Decoupling Status | %∆LUI | %∆MPM2.5 | DIt1−t2 | |
---|---|---|---|---|
Decoupling | Strong decoupling | − | + | DI < 0 |
Weak decoupling | + | + | 0 ≤ DI < 0.8 | |
Negative Decoupling | Expansion negative decoupling | + | + | DI ≥ 1.2 |
Strong negative decoupling | + | − | DI < 0 | |
Weak negative decoupling | − | − | 0 ≤ DI < 0.8 | |
Recessive decoupling | − | − | DI ≥ 1.2 | |
Connection | Expansion connection | + | + | 0.8 ≤ DI ≤ 1.2 |
Recessive connection | − | − | 0.8 ≤ DI ≤ 1.2 |
Decoupling Status | 2000–2007 | 2007–2013 | 2013–2021 | 2000–2021 |
---|---|---|---|---|
Strong decoupling | 40.47% | 23.18% | 0.00% | 0.00% |
Weak decoupling | 56.36% | 31.31% | 0.00% | 0.00% |
Expansion negative decoupling | 0.84% | 20.47% | 0.00% | 0.00% |
Strong negative decoupling | 0.56% | 15.33% | 67.01% | 71.12% |
Weak negative decoupling | 0.09% | 1.21% | 32.62% | 24.86% |
Recessive decoupling | 1.31% | 2.52% | 0.19% | 1.50% |
Expansion connection | 0.37% | 5.61% | 0.00% | 0.00% |
Recessive connection | 0.00% | 0.37% | 0.19% | 2.52% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Jing, Y.; Ran, D. Is There a Relationship between Increased Land-Use Intensity and the Rise in PM2.5 Pollution Levels in the Yangtze River Economic Belt, China (2000–2021)? Atmosphere 2023, 14, 1097. https://doi.org/10.3390/atmos14071097
He J, Jing Y, Ran D. Is There a Relationship between Increased Land-Use Intensity and the Rise in PM2.5 Pollution Levels in the Yangtze River Economic Belt, China (2000–2021)? Atmosphere. 2023; 14(7):1097. https://doi.org/10.3390/atmos14071097
Chicago/Turabian StyleHe, Jia, Yuhan Jing, and Duan Ran. 2023. "Is There a Relationship between Increased Land-Use Intensity and the Rise in PM2.5 Pollution Levels in the Yangtze River Economic Belt, China (2000–2021)?" Atmosphere 14, no. 7: 1097. https://doi.org/10.3390/atmos14071097
APA StyleHe, J., Jing, Y., & Ran, D. (2023). Is There a Relationship between Increased Land-Use Intensity and the Rise in PM2.5 Pollution Levels in the Yangtze River Economic Belt, China (2000–2021)? Atmosphere, 14(7), 1097. https://doi.org/10.3390/atmos14071097