Chemical Characterization of Atmospheric Aerosols in Monte Fenton, Punta Arenas, Chilean Southern Patagonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Available and Obtained for This Study
3. Results
3.1. Meteorological Data
3.2. Chemical Concentrations Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagzi, I.; Mészáros, R.; Gelybó, G.; Leelössy, A. Atmospheric Chemistry; Eötvös Loránd University: Budapest, Hungary, 2013; p. 208. [Google Scholar]
- Seguel, R.; Morales, R.G.E.; Leiva, M.A. Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City, Chile. Atmos. Environ. 2009, 30, 7. [Google Scholar] [CrossRef]
- Rueda-Holgado, F.; Palomo-Marín, M.R.; Calvo-Blázquez, L.; Cereceda-Balic, F.; Pinilla-Gil, E. Fractionation of trace elements in total Atmospheric deposition by filtrating bulk passive sampling. Talanta 2014, 125, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.J.; O’Sullivan, D.; Atkinson, J.D.; Webb, M.E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkert-Kohn, M.; Wex, H.; Welti, A.; Hartmann, S.; Grawe, S.; Hellner, L.; Herenz, P.; Atkinson, J.D.; Stratmann, F.; Kanji, Z.A. Leipzig Ice Nucleation chamber Comparison (LINC): Intercomparison of four online ice nucleation counters. Atmos. Chem. Phys. 2017, 17, 11683–11705. [Google Scholar] [CrossRef] [Green Version]
- Donateo, A.; Contini, D. Correlation of Dry Deposition Velocity and Friction Velocity over Different Surfaces for PM2.5 and Particle Number Concentrations. Adv. Meteorol. 2014, 14, 760393. [Google Scholar] [CrossRef]
- Johnson, J.S.; Regayre, L.A.; Yoshioka, M.; Pringle, K.J.; Lee, L.A.; Sexton, D.M.H.; Rostron, J.W.; Booth, B.B.B.; Carslaw, K.S. The importance of comprehensive parameter sampling and multiple observations for robust constraint of aerosol radiative forcing. Atmos. Chem. Phys. 2018, 18, 13031–13053. [Google Scholar] [CrossRef] [Green Version]
- Mariraj, S. An overview of particulate dry deposition: Measuring methods, deposition velocity and controlling factors. Int. J. Environ. Sci. Technol. 2016, 13, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, J.; Zhai, J.; Cong, L.; Wang, Y.; Ma, W.; Zhang, Z.; Li, C. Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLoS ONE 2018, 13, e0199241. [Google Scholar] [CrossRef]
- Araujo, T.G.; Souza, M.F.L.Z.; de Mello, W.L.; da Silva, D.M. Bulk Atmospheric Deposition of Major Ions and Dissolved Organic Nitrogen in the Lower Course of a Tropical River Basin, Southern Bahia, Brazil. J. Braz. Chem. Soc. 2015, 26, 1692–1701. [Google Scholar] [CrossRef]
- Rueda-Holgado, F.; Calvo-Blázquez, L.; Cereceda-Balic, F.; Pinilla-Gil, E. Temporal and spatial variation of trace elements in Atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils. Chemosphere 2016, 144, 1788–1796. [Google Scholar] [CrossRef]
- Abbatt, J.P.D.; Leaitch, W.R.; Aliabadi, A.A.; Bertram, A.K.; Blanchet, J.-P.; Boivin-Rioux, A.; Bozem, H.; Burkart, J.; Chang, R.Y.W.; Charette, J.; et al. Overview paper: New insights into aerosol and climate in the Arctic. Atmos. Chem. Phys. 2019, 19, 2527–2560. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, B. A darker cryosphere in a warming world. Nat. Clim. Chang. 2020, 10, 978–982. [Google Scholar] [CrossRef]
- Skiles, S.M.; Flanner, M.; Cook, J.M.; Dumont, M.; Painter, T.H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Chang. 2018, 8, 964–971. [Google Scholar] [CrossRef]
- Stocker, T.F.D.; Qin, G.-K.; Plattner, M.; Tignor, S.K.; Allen, J.; Boschung, A.; Nauels, Y.; Xia, V.; Bex, P.M. (Eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1585. [Google Scholar]
- Satow, K. Chemical features of the precipitation in summer at Tyndall Glacier, Patagonia. Bull. Glaciol. Res. 1995, 13, 57–61. [Google Scholar]
- Dalia, K.C.; Evangelista, H.; Pereira, E.B.; Simões, J.C.; Johnson, E.; Melo, L.R. Transport of crustal microparticles from Chilean Patagonia to the Antarctic Peninsula by SEM-EDS analysis. Tellus B Chem. Phys. Meteorol. 2004, 56, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Schwikowski, M.; Brütsch, S.; Casassa, G.; Rivera, A. A potential high-elevation ice-core site at Hielo Patagónico Sur. Ann. Glaciol. 2006, 43, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.; Haro, J.; Prego, R. Metals background and enrichment in the Chiloé Interior Sea sediments (Chile). Is there any segregation between fjords, channels and sounds? Estuar. Coast. Shelf Sci. 2009, 82, 469–476. [Google Scholar] [CrossRef]
- Grigholm, B.; Mayewski, P.A.; Kurbatov, A.V.; Casassa, G.; Contreras, A.; Handley, M.; Sneed, S.B.; Introne, D.S. Chemical composition of fresh snow from Glaciar Marinelli, Tierra del Fuego, Chile. J. Glaciol. 2009, 55, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Zihan, Q. Chemical Properties of Continental Aerosol Transported over the Southern Ocean: Patagonian and Namibian Sources. Ph.D. Thesis, Pierre and Marie Curie University, Paris, France, July 2016. [Google Scholar]
- Contini, D.; Donateo, A.; Belosi, F.; Grasso, F.M.; Santachiara, G.; Prodi, F. Deposition velocity of ultrafine particles measured with the Eddy-Correlation Method over the Nansen Ice Sheet (Antarctica). J. Geophys. Res. 2010, 115, D16202. [Google Scholar] [CrossRef] [Green Version]
- Wolff, E.W.; Hall, J.S.; Mulvaney, R.; Pasteur, E.C.; Wagenbach, D.; Legrand, M. Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica. J. Geophys. Res. 1998, 103, 11057–11070. [Google Scholar] [CrossRef] [Green Version]
- Udisti, R.; Becagli, S.; Benassai, S.; Castellano, E.; Fattori, L.; Innocenti, M.; Migliori, A.; Traverse, R. Atmosphere–snow interaction by a comparison between aerosol and uppermost snow-layers composition at Dome C, East Antarctica. Ann. Glaciol. 2004, 39, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Valdés, J.; Vargas, G.; Sifeddine, A.; Ortlieb, L.; Guiñez, M. Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23 °S), Northern Chile: Geochemical and statistical approach. Mar. Pollut. Bull. 2005, 50, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Ahumada, R.B.; Rudolph, A.J.; Mudge, S.M. Trace metals in sediments of Southeast Pacific Fjords, north region (42.5° to 46.5 °S). J. Environ. Monit. 2007, 10, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Dixon, D.A.; Mayewski, P.A.; Korotkikh, E.; Sneed, S.B.; Handley, M.J.; Introne, D.S.; Scambos, T.A. Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing. Cryosphere 2013, 7, 515–535. [Google Scholar] [CrossRef] [Green Version]
- Budhavant, K.B.; Rao, P.S.P.; Safai, P.D. Chemical Composition of Snow-Water and Scavenging Ratios over Costal Antarctica. Aerosol Air Qual. Res. 2014, 14, 666–676. [Google Scholar] [CrossRef] [Green Version]
- Ahumada, R.; González, E.; Diaz, C.; Silva, N. Characterization of Baker Fjord region through its heavy metal content on sediments (Central Chilean Patagonia). Lat. Am. J. Aquat. Res. 2015, 43, 581–587. [Google Scholar] [CrossRef]
- Cid-Agüero, P.; Toro, C.; Khondoker, R.; Salamanca, M.; Jara, B.; Cárdenas, C. Effect of the 2008 chaitén volcano eruption over the antartic snowfall. An. Inst. Patagon (Chile) 2008, 45, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Cereceda-Balic, F.; Vidal, V.; Ruggeri, M.F.; González, H. Black carbon pollution in snow and its impact on albedo near the Chilean stations on the Antartic peninsula: First Results. Sci. Total Environ. 2020, 743, 18. [Google Scholar] [CrossRef]
- Wang, H.; Cong, H.; Feng, X.; Ji, C.; Jia, Y. In-situ long-period monitoring of suspended particulate matter dynamics in deep sea with digital video images. Front. Mar. Sci. 2022, 9, 1011029. [Google Scholar] [CrossRef]
- Mendes, A.P. Caracterização do Aerossol Biogênico Primário na Atmosfera da Região Metropolitana de São Paulo. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2021. [Google Scholar]
- Cereceda-Balic, F.; de la Gala-Morales, M.; Palomo-Marín, R.; Fadic, X.; Vidal, V.; Funes, M.; Rueda-Holgado, F.; Pinilla-Gil, E. Spatial distribution, sources and risk assessment of major ions ad trace elements in rainwater at Puchuncaví Valley, Chile: The impact of industrial activities. Atmos. Pollut. Res. 2020, 11, 99–109. [Google Scholar] [CrossRef]
- Goldberg, E.D.; Koide, M.; Schmitt, R.A.; Smith, R.H. Rare Earth Distributions in the Marine Environment. J. Geophys. Res. 1963, 68, 4209–4217. [Google Scholar] [CrossRef]
- Holland, H.D. The Chemistry of the Atmosphere and Oceans; John Wiley & Sons Inc: New York, NY, USA, 1979; p. 369. [Google Scholar]
- Horn, M.K.; Adams, J.A.S. Computer-derived geochemical balances and element abundances. Geochim. Cosmochim. Acta. 1966, 40, 279–297. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta. 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Gorena, T.; Fadic, X.; Cereceda-Balic, F. Cupressus marocarpa leaves for biomonitoring the environmental impact of an industrial complex: The case of Puchuncaví Ventanas in Chile. Chemosphere 2020, 260, 9. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis Second Edition; Springer: New York, NY, USA, 1986; p. 518. [Google Scholar]
- Lawson, D.R.; Winchester, J.W. A Standard crustal aerosol as reference for elemental enrichment factors. Atmos. Environ. 1979, 13, 925–930. [Google Scholar] [CrossRef]
- Sutherland, R. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Wagenbach, D.; Legrand, M.; Fischer, H.; Pichlmayer, F.; Wolff, E.W. Atmospheric near surface nitrate at coastal Antartic sites. J. Geophys. Res. 1998, 103, 11007–11020. [Google Scholar] [CrossRef] [Green Version]
- Wagnon, P.; Delmas, R.J.; Legrand, M. Loss of volatile acid species from upper firn layers at Vostok, Antarctica. J. Geophys. Res. Atmos. 1999, 104, 3423–3431. [Google Scholar] [CrossRef]
- EPA. United States Environmental Protection Agency. 2019. Available online: https://www.epa.gov/acidrain (accessed on 22 January 2022).
- Liljestrand, H.M. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems. Atmos. Environ. 1985, 19, 487–499. [Google Scholar] [CrossRef]
- EPA. United States Environmental Protection Agency. 2019. Available online: https://archive.epa.gov/water/archive/web/html/vms59.html (accessed on 22 January 2022).
- Chalmers, J. Atmospheric Electricity. Q. J. R. Meteorol. Soc. 1967, 95, 515–570. [Google Scholar] [CrossRef]
- Light, T.S.; Kingman, E.A.; Bevilaqua, A.C. The Conductivity of Low Concentrations of CO2 Dissolved in Ultrapore Water from 0–100 °C, Thornton Associates, Inc. 1432 Main Street Waltham, MA 02154, Paper Presented at the 209th American Chemical Society National Meeting, Anaheim, CA, USA, 2–6 April 1995. [Google Scholar]
- Zdeb, M.; Papciak, D.; Zamorska, J. An assessment of the quality and use of rainwater as the basis for sustainable water management in suburban areas. E3S Web Conf. 2018, 45, 8. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Xu, H.; Bi, X.; Lin, F.; Jiao, L.; Zhang, Y.; Feng, Y. The effect of atmospheric particulates in the rainwater chemistry in the Yangtze River Delta, China. J. Air Waste Manag. Assoc. 2019, 69, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Pye, H.O.T.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Collet, J.L., Jr.; Fahey, K.M.; Hennigen, C.J.; Herrmann, H.; et al. The acidity of Atmospheric Particles and Clouds. Atmos. Chem. Phys. 2019, 20, 4809–4888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsikko, A. On Formation, Growth and Concentrations of Air Ions. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, June 2011. [Google Scholar]
- Kamsali, N.; Prasad, B.S.N.; Datta, J. The Electrical Conductivity as an Index of Air Pollution in the Atmosphere. In Advanced Air Pollution; Nejadkoorki, F., Ed.; IntechOpen: London, UK, 2011; pp. 365–390. [Google Scholar]
- Kumar-Mishra, A.; Kumar, A.; Mishra, V. The Variation of Atmospheric Electrical Conductivity as the Function of Altitude. IJITEE 2020, 10, 2278–3075. [Google Scholar]
- De Miguel-Fernández, C.; Vásquez-Taset, Y.M. Origen de los nitratos (NO3) y nitritos (NO2) y su influencia en la potabilidad de las aguas subterráneas. Min. Geol. 2006, 22, 9. [Google Scholar]
- Duvall, R.M.; Majestic, B.J.; Shafer, M.M.; Chuang, P.Y.; Simoneit, B.R.T.; Schauer, J.J. The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmos. Environ. 2008, 42, 5872–5884. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley: New Jersey, NJ, USA, 2016; p. 1152. [Google Scholar]
- Wu, P.; Aijin, Y.; Fan, M.; Wu, J.; Yang, X.; Zhang, H.; Chao, G. Phosphorus dynamics influenced by anthropogenic calcium in an urban stream flowing along an increasing urbanization gradient. Landsc. Urban Plan. 2018, 177, 9. [Google Scholar] [CrossRef]
- INE. Instituto Nacional de Estadísticas. 2017. Available online: http://resultados.censo2017.cl/Region?R=R12 (accessed on 15 July 2020).
- Fong-Silva, W.; Quiñonez-Bolaños, E.; Tejada-Tovar, C. Caracterización físico-química de aceites usados de motores para su reciclaje. Prospect 2017, 15, 135–144. [Google Scholar]
- Rodríguez-Heredia, D. Occupational poisoning due to heavy metals. Medisan 2017, 21, 3372–3384. [Google Scholar]
- BNd. Biblioteca Nacional Digital de Chile. 2015. Available online: https://biblioteca.digital.gob.cl/handle/123456789/586 (accessed on 7 September 2021).
- Perry, E. Wood Ashes as a Garden Fertilizer; Vegetable Research and Information Center, University of California: Berkeley, CA, USA, 1982; p. 2. [Google Scholar]
- Hobbs, P.V.; Reid, J.S.; Kotchenruther, R.A.; Ferek, R.J.; Weiss, R. Direct Radiative Forcing by Smoke from Biomass Burning. Science 1997, 275, 1776–1778. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking Rain Clouds over the Amazon. Science 2004, 303, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Pachon, J.E.; Weber, R.J.; Zhang, X.; Mulholland, J.A.; Russell, A.G. Revising the use of potassium (K) in the source apportionment of PM2.5. Atmos. Pollut. Res. 2013, 4, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Yankovsky, S.; Tolokol’nikovm, A.; Misyukova, A.; Kuznetsov, G. On the Effect of the Distances between Coal and Wood Particles during Their Joint Pyrolysis on Sulfur Oxides Formation. Energies 2021, 14, 8321. [Google Scholar] [CrossRef]
- SINCA. Sistema de Información Nacional de Calidad del Aire. 2019. Available online: https://sinca.mma.gob.cl/index.php/estacion/index/id/191 (accessed on 17 October 2022).
Sampling | Date | T (°C) | RH (%) | Wind Direction |
---|---|---|---|---|
Polycarbonate filter 1 | 8–15 May | 1.8 | 88.9 | 270.4 |
Polycarbonate filter 2 | 15–22 May | 2.4 | 92.0 | 316.7 |
Polycarbonate filter 3 | 22–29 May | 0.7 | 93.6 | 300.3 |
Polycarbonate filter 4 | 29 May–4 June | 1.0 | 88.1 | 266.3 |
Polycarbonate filter 5 | 4–20 June | 0.1 | 93.6 | 236.3 |
Polycarbonate filter 6 | 20 June–2 July | −2.6 | 92.4 | 264.3 |
Polycarbonate filter 7 | 2–9 July | −0.8 | 96.8 | 161.4 |
Polycarbonate filter 8 | 9–17 July | −0.9 | 96.6 | 80.4 |
Polycarbonate filter 9 | 17–31 July | −1.6 | 92.7 | 312.6 |
TDPC 1 | 5 June–31 July | −1.1 | 94.1 | 236.3 |
Polycarbonate filter 10/TDPC 2 | 31 July–8 August | −2.0 | 96.8 | 309.5 |
Polycarbonate filter 11 | 8–14 August | −3.4 | 86.5 | 309.5 |
Polycarbonate filter 12 | 14–22 August | −0.7 | 91.5 | 38.43 |
TDPC 3 | 8–22 August | −1.7 | 89.2 | 312.6 |
Polycarbonate filter 13/TDPC 4 | 22–29 August | −2.1 | 96.7 | 287.5 |
Polycarbonate filter 14/TDPC 5 | 29 August–5 September | −3.5 | 87.7 | 263.7 |
Polycarbonate filter 15/TDPC 6 | 5–26 September | −1.0 | 82.3 | 282.5 |
Polycarbonate filter 16/TDPC 7 | 26 September–3 October | −0.4 | 82.4 | 261.1 |
Polycarbonate filter 17/TDPC 8 | 3–10 October | −1.1 | 86.3 | 282.2 |
Polycarbonate filter 18/TDPC 9 | 9–16 October | −0.1 | 94.6 | 261.1 |
Polycarbonate filter 19 | 16–23 October | 1.7 | 82.3 | 350.3 |
Polycarbonate filter 20 | 23 October–6 November | −0.4 | 82.7 | 260.8 |
Polycarbonate filter 21 | 6–13 November | 4.2 | 78.3 | 314.2 |
Polycarbonate filter 22 | 13–20 November | 2.8 | 76.7 | 262.4 |
TDPC 10 | 23 October–20 November | 1.4 | 80.3 | 312.6 |
Concentrations (mg/m3) | ||||
---|---|---|---|---|
Element | Mean | Minimum | Maximum | (%) |
Al | 2.1 × 10−5 | 9.1 × 10−8 | 2.7 × 10−4 | 1.1 |
Br | 1.7 × 10−6 | 1.7 × 10−8 | 2.1 × 10−5 | 0.1 |
crCa | 1.1 × 10−5 | 2.7 × 10−8 | 1.6 × 10−4 | 0.5 |
ncrCa | 2.2 × 10−6 | 2.7 × 10−8 | 1.1 × 10−5 | 0.1 |
Cl | 3.4 × 10−4 | 3.1 × 10−5 | 9.8 × 10−4 | 17.2 |
Cr | 3.9 × 10−4 | 5.5 × 10−8 | 8.5 × 10−3 | 19.8 |
Fe | 9.5 × 10−4 | 6.2 × 10−7 | 2.1 × 10−2 | 48.3 |
crK | 2.6 × 10−6 | 7.0 × 10−9 | 2.6 × 10−5 | 0.1 |
ncrK | 6.2 × 10−6 | 7.0 × 10−9 | 1.9 × 10−5 | 0.3 |
crMg | 3.2 × 10−6 | 3.5 × 10−8 | 2.0 × 10−5 | 0.2 |
ncrMg | 3.2 × 10−6 | 7.3 × 10−8 | 1.7 × 10−5 | 0.2 |
Mn | 2.4 × 10−5 | 2.2 × 10−8 | 5.3 × 10−4 | 1.2 |
crNa | 5.4 × 10−6 | 2.4 × 10−8 | 7.0 × 10−5 | 0.3 |
ncrNa | 6.6 × 10−5 | 2.8 × 10−6 | 5.3 × 10−4 | 3.4 |
Ni | 5.8 × 10−5 | 1.6 × 10−8 | 1.3 × 10−3 | 3.0 |
P | 1.3 × 10−6 | 2.0 × 10−8 | 7.4 × 10−6 | 0.1 |
Pb | 1.3 × 10−6 | 9.5 × 10−8 | 1.4 × 10−5 | 0.1 |
S | 3.9 × 10−5 | 5.2 × 10−6 | 9.9 × 10−5 | 2.0 |
Se | 3.4 × 10−7 | 3.0 × 10−8 | 1.5 × 10−6 | 0.0 |
Si | 4.0 × 10−5 | 3.0 × 10−8 | 2.6 × 10−4 | 2.0 |
Ti | 5.9 × 10−7 | 5.3 × 10−8 | 5.2 × 10−6 | 0.0 |
V | 9.9 × 10−7 | 9.7 × 10−9 | 2.0 × 10−5 | 0.1 |
crZn | 2.0 × 10−8 | 8.8 × 10−11 | 2.6 × 10−7 | 0.0 |
ncrZn | 5.5 × 10−7 | 1.2 × 10−7 | 2.5 × 10−6 | 0.0 |
Total | 100 |
Concentrations (mg/m3) | ||||
---|---|---|---|---|
Ion | Mean | Minimum | Maximum | (%) |
NH4+ | 1.2 × 103 | 5.5 × 102 | 1.8 × 103 | 5.7 |
Ca2+ | 2.1 × 102 | 5.0 × 10−1 | 8.5 × 102 | 1.0 |
Cl− | 1.1 × 104 | 2.4 × 103 | 2.9 × 104 | 55.0 |
Mg2+ | 2.1 × 102 | 1.0 × 100 | 8.9 × 102 | 1.0 |
NO3− | 2.7 × 102 | 8.4 × 101 | 6.5 × 102 | 1.3 |
ssK+ | 1.6 × 102 | 6.1 × 101 | 2.7 × 102 | 0.8 |
nssK+ | 6.4 × 102 | 4.0 × 101 | 2.5 × 103 | 3.1 |
Na+ | 4.3 × 103 | 1.6 × 103 | 7.1 × 103 | 21.0 |
ssSO42− | 1.1 × 103 | 4.2 × 102 | 1.8 × 103 | 5.3 |
nssSO42− | 1.2 × 103 | 4.0 × 100 | 4.7 × 103 | 5.7 |
pH | 6.8 | 6.4 | 7.4 | |
EC | 32.5 | 15.0 | 49.6 | |
Total | 100 |
Correlation Coefficient | ||
---|---|---|
Ion | R2 (pH) | R2 (EC) |
NH4+ | 0.43 | 0.03 |
Ca2+ | 0.09 | 0.02 |
Cl− | 0.01 | 0.21 |
Mg2+ | 0.00 | 0.06 |
NO3− | 0.17 | 0.02 |
ssK+ | 0.08 | 0.49 |
nssK+ | 0.01 | 0.02 |
Na+ | 0.08 | 0.52 |
ssSO42− | 0.07 | 0.49 |
nssSO42− | 0.07 | 0.00 |
Element | F1 | F2 |
---|---|---|
V | 0.993 | 0.033 |
Mn | 0.992 | 0.033 |
Fe | 0.992 | 0.033 |
Ni | 0.992 | 0.033 |
Cr | 0.992 | 0.033 |
Pb | 0.991 | 0.045 |
Al | 0.987 | 0.092 |
crNa | 0.987 | 0.092 |
crZn | 0.987 | 0.092 |
crCa | 0.984 | 0.115 |
Br | 0.983 | 0.131 |
crK | 0.969 | 0.135 |
ncrNa | 0.967 | 0.219 |
Ti | 0.939 | 0.161 |
crMg | 0.939 | 0.221 |
Se | 0.930 | 0.122 |
P | 0.861 | 0.268 |
Si | 0.734 | 0.317 |
Cl | 0.116 | 0.971 |
ncrK | −0.281 | 0.943 |
S | 0.402 | 0.902 |
ncrCa | 0.541 | 0.668 |
ncrMg | −0.119 | −0.085 |
ncrZn | 0.046 | 0.186 |
Accumulated variance (%) | 71.3 | 85.9 |
Ion | F1 | F2 | F3 |
---|---|---|---|
ssSO42− | 0.967 | −0.038 | 0.233 |
ssK+ | 0.967 | −0.038 | 0.233 |
Na+ | 0.967 | −0.038 | 0.233 |
Mg2+ | 0.845 | 0.424 | −0.060 |
Cl− | 0.839 | 0.404 | 0.265 |
nssK+ | 0.016 | 0.956 | 0.099 |
nssSO42− | 0.295 | 0.933 | 0.057 |
Ca2+ | −0.027 | 0.929 | −0.161 |
NH4+ | 0.274 | −0.323 | 0.866 |
NO3− | 0.280 | 0.467 | 0.809 |
Accumulated variance (%) | 44.7 | 77.8 | 94.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansilla, G.; Barja, B.; Godoi, M.A.; Cid-Agüero, P.; Gorena, T.; Cereceda-Balic, F. Chemical Characterization of Atmospheric Aerosols in Monte Fenton, Punta Arenas, Chilean Southern Patagonia. Atmosphere 2023, 14, 1084. https://doi.org/10.3390/atmos14071084
Mansilla G, Barja B, Godoi MA, Cid-Agüero P, Gorena T, Cereceda-Balic F. Chemical Characterization of Atmospheric Aerosols in Monte Fenton, Punta Arenas, Chilean Southern Patagonia. Atmosphere. 2023; 14(7):1084. https://doi.org/10.3390/atmos14071084
Chicago/Turabian StyleMansilla, Gonzalo, Boris Barja, María Angélica Godoi, Pedro Cid-Agüero, Tamara Gorena, and Francisco Cereceda-Balic. 2023. "Chemical Characterization of Atmospheric Aerosols in Monte Fenton, Punta Arenas, Chilean Southern Patagonia" Atmosphere 14, no. 7: 1084. https://doi.org/10.3390/atmos14071084
APA StyleMansilla, G., Barja, B., Godoi, M. A., Cid-Agüero, P., Gorena, T., & Cereceda-Balic, F. (2023). Chemical Characterization of Atmospheric Aerosols in Monte Fenton, Punta Arenas, Chilean Southern Patagonia. Atmosphere, 14(7), 1084. https://doi.org/10.3390/atmos14071084