Poleward Migration of Spatial Asymmetry in Tropical Cyclone Precipitation over the Western North Pacific
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. TC Precipitation and Occurrence over the WNP
3.2. Observed Spatial Asymmetry in TC Precipitation
3.3. Mechanism Analysis
4. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parks, R.M.; Anderson, G.B.; Nethery, R.C.; Navas-Acien, A.; Dominici, F.; Kioumourtzoglou, M.A. Tropical cyclone exposure is associated with increased hospitalization rates in older adults. Nat. Commun. 2021, 12, 1545. [Google Scholar] [CrossRef]
- Parks, R.M.; Benavides, J.; Anderson, G.B.; Nethery, R.C.; Navas-Acien, A.; Dominici, F.; Ezzati, M.; Kioumourtzoglou, M.A. Association of Tropical Cyclones with County-Level Mortality in the US. JAMA 2022, 327, 946–955. [Google Scholar] [CrossRef]
- Czajkowski, J.; Villarini, G.; Montgomery, M.; Michel-Kerjan, E.; Goska, R. Assessing Current and Future Freshwater Flood Risk from North Atlantic Tropical Cyclones via Insurance Claims. Sci. Rep. 2017, 7, 41609. [Google Scholar] [CrossRef]
- Samodra, G.; Ngadisih, N.; Malawani, M.N.; Mardiatno, D.; Cahyadi, A.; Nugroho, F.S. Frequency–magnitude of landslides affected by the 27–29 November 2017 Tropical Cyclone Cempaka in Pacitan, East Java. J. Mt. Sci. 2020, 17, 773–786. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, S.; Cheng, W.; Zhu, L.; Chen, Y.; Liu, J.; Gong, W.; Li, Y.; Li, S. Response of freshwater transport during typhoons with wave-induced mixing effects in the Pearl River Estuary, China. Estuar. Coast. Shelf Sci. 2021, 258, 107439. [Google Scholar] [CrossRef]
- Kossin, J.P.; Olander, T.L.; Knapp, K.R. Trend Analysis with a New Global Record of Tropical Cyclone Intensity. J. Clim. 2013, 26, 9960–9976. [Google Scholar] [CrossRef]
- Niu, Y.; Touma, D.; Ting, M.; Camargo, S.J.; Chen, R. Assessing Heavy Precipitation Risk Associated with Tropical Cyclones in China. J. Appl. Meteorol. Climatol. 2022, 61, 577–591. [Google Scholar] [CrossRef]
- Liang, J.; Chan, K.T.F. Rainfall asymmetries of the western North Pacific tropical cyclones as inferred from GPM. Int. J. Climatol. 2021, 41, 5465–5480. [Google Scholar] [CrossRef]
- Liu, H.; Gu, J.; Wang, Y. Consistent Pattern of Rainfall Asymmetry in Binary Tropical Cyclones. Geophys. Res. Lett. 2023, 50, e2022GL101866. [Google Scholar] [CrossRef]
- Pei, Y.; Jiang, H. Quantification of Precipitation Asymmetries of Tropical Cyclones Using 16-Year TRMM Observations. J. Geophys. Res. Atmos. 2018, 123, 8091–8114. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, X. Determining Tropical Cyclone Center and Rainband Size in Geostationary Satellite Imagery. Remote Sens. 2022, 14, 3499. [Google Scholar] [CrossRef]
- Touma, D.; Stevenson, S.; Camargo, S.J.; Horton, D.E.; Diffenbaugh, N.S. Variations in the Intensity and Spatial Extent of Tropical Cyclone Precipitation. Geophys. Res. Lett. 2019, 46, 13992–14002. [Google Scholar] [CrossRef]
- Wingo, M.T.; Cecil, D.J. Effects of Vertical Wind Shear on Tropical Cyclone Precipitation. Mon. Weather Rev. 2010, 138, 645–662. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Duan, Y. A Numerical Study of Outer Rainband Formation in a Sheared Tropical Cyclone. J. Atmos. Sci. 2017, 74, 203–227. [Google Scholar] [CrossRef]
- Na, W.; Xinghai, Z.; Lianshou, C.; Hao, H. Comparison of the effect of easterly and westerly vertical wind shear on tropical cyclone intensity change over the western North Pacific. Environ. Res. Lett. 2018, 13, 034020. [Google Scholar] [CrossRef]
- Uddin, M.J.; Nasrin, Z.M.; Li, Y. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries over the North Indian Ocean. Dyn. Atmos. Ocean. 2021, 93, 101196. [Google Scholar] [CrossRef]
- Good, P.; Chadwick, R.; Holloway, C.E.; Kennedy, J.; Lowe, J.A.; Roehrig, R.; Rushley, S.S. High sensitivity of tropical precipitation to local sea surface temperature. Nature 2021, 589, 408–414. [Google Scholar] [CrossRef]
- Stansfield, A.M.; Reed, K.A. Tropical Cyclone Precipitation Response to Surface Warming in Aquaplanet Simulations with Uniform Thermal Forcing. J. Geophys. Res. Atmos. 2021, 126, e2021JD035197. [Google Scholar] [CrossRef]
- Hallam, S.; McCarthy, G.D.; Feng, X.; Josey, S.A.; Harris, E.; Düsterhus, A.; Ogungbenro, S.; Hirschi, J.J.M. The relationship between sea surface temperature anomalies, wind and translation speed and North Atlantic tropical cyclone rainfall over ocean and land. Environ. Res. Commun. 2023, 5, 025007. [Google Scholar] [CrossRef]
- Finocchio, P.M.; Rios-Berrios, R. The Intensity- and Size-Dependent Response of Tropical Cyclones to Increasing Vertical Wind Shear. J. Atmos. Sci. 2021, 78, 3673–3690. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Y.; Riemer, M.; Li, Q. Effect of Unidirectional Vertical Wind Shear on Tropical Cyclone Intensity Change—Lower-Layer Shear versus Upper-Layer Shear. J. Geophys. Res. Atmos. 2019, 124, 6265–6282. [Google Scholar] [CrossRef]
- Zhang, F.; Tao, D. Evolution of Dynamic and Thermodynamic Structures before and during Rapid Intensification of Tropical Cyclones: Sensitivity to Vertical Wind Shear. Mon. Weather Rev. 2019, 147, 1171–1191. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef]
- Sun, J.; Ju, X.; Zheng, Q.; Wang, G.; Li, L.; Xiong, X. Numerical Study of the Response of Typhoon Hato (2017) to Grouped Mesoscale Eddies in the Northern South China Sea. J. Geophys. Res. Atmos. 2023, 128, e2022JD037266. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Jin, S.; Ju, X.; Xiong, X. Quantifying tropical cyclone intensity change induced by sea surface temperature. Int. J. Climatol. 2022, 42, 4716–4727. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Xiong, X.; Hui, Z.; Hu, X.; Ling, Z.; Yu, L.; Yang, G.; Guo, Y.; Ju, X.; et al. Impact of warm mesoscale eddy on tropical cyclone intensity. Acta Oceanol. Sin. 2020, 39, 1–13. [Google Scholar] [CrossRef]
- Sun, J.; Zuo, J.; Ling, Z.; Yan, Y. Role of ocean upper layer warm water in the rapid intensification of tropical cyclones: A case study of typhoon Rammasun (1409). Acta Oceanol. Sin. 2016, 35, 63–68. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, M.; Zhang, M. Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun. 2015, 6, 6591. [Google Scholar] [CrossRef]
- Kim, D.; Ho, C.-H.; Park, D.-S.R.; Chan, J.C.L.; Jung, Y. The Relationship between Tropical Cyclone Rainfall Area and Environmental Conditions over the Subtropical Oceans. J. Clim. 2018, 31, 4605–4616. [Google Scholar] [CrossRef]
- Tu, S.; Chan, J.C.L.; Xu, J.; Zhong, Q.; Zhou, W.; Zhang, Y. Increase in tropical cyclone rain rate with translation speed. Nat. Commun. 2022, 13, 7325. [Google Scholar] [CrossRef]
- Sun, J.; Wang, D.; Hu, X.; Ling, Z.; Wang, L. Ongoing Poleward Migration of Tropical Cyclone Occurrence Over the Western North Pacific Ocean. Geophys. Res. Lett. 2019, 46, 9110–9117. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B.; Geng, S. Growing typhoon influence on east Asia. Geophys. Res. Lett. 2005, 32, L18703. [Google Scholar] [CrossRef]
- Zhang, L.; Karnauskas, K.B.; Donnelly, J.P.; Emanuel, K. Response of the North Pacific Tropical Cyclone Climatology to Global Warming: Application of Dynamical Downscaling to CMIP5 Models. J. Clim. 2017, 30, 1233–1243. [Google Scholar] [CrossRef]
- Feng, X.; Klingaman, N.P.; Hodges, K.I. Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality. Nat. Commun. 2021, 12, 6210. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, G.; Zuo, J.; Ling, Z.; Liu, D. Role of surface warming in the northward shift of tropical cyclone tracks over the South China Sea in November. Acta Oceanol. Sin. 2017, 36, 67–72. [Google Scholar] [CrossRef]
- Knapp, K.R.; Diamond, H.J.; Kossin, J.P.; Kruk, M.C.; Schreck, C.J. International Best Track Archive for Climate Stewardship (IBTrACS) Project (Version 4) [Dataset]; NOAA National Centers for Environmental Information: Stennis Space Center, MS, USA, 2018. [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- MW-IR Optimum Interpolated SST Dataset Version 5.1. Remote Sensing Systems (RSS) [Dataset]; PO.DAAC: Pasadena, CA, USA, 2022. [CrossRef]
- Dare, R.A.; McBride, J.L. Sea Surface Temperature Response to Tropical Cyclones. Mon. Weather Rev. 2011, 139, 3798–3808. [Google Scholar] [CrossRef]
- Vincent, E.M.; Lengaigne, M.; Madec, G.; Vialard, J.; Samson, G.; Jourdain, N.C.; Menkes, C.E.; Jullien, S. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res. Ocean. 2012, 117, C02020. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. Recent tropical cyclone changes inferred from ocean surface temperature cold wakes. Sci. Rep. 2021, 11, 22269. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. TRMM (TMPA) Precipitation L3 1 Day 0.25 Degree x 0.25 Degree V7; [Dataset]; Savtchenko, A., Ed.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2016. [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef] [PubMed]
- Merchant, C.J.; Minnett, P.J.; Beggs, H.; Corlett, G.K.; Gentemann, C.; Harris, A.R.; Hoyer, J.; Maturi, E. Global Sea Surface Temperature. In Taking the Temperature of the Earth; Hulley, G.C., Ghent, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 5–55. [Google Scholar]
- Chen, S.S.; Knaff, J.A.; Marks, F.D. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Mon. Weather Rev. 2006, 134, 3190–3208. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Chan, J.C.L.; Moon, I.J.; Yoshida, K.; Mizuta, R. Global warming changes tropical cyclone translation speed. Nat. Commun. 2020, 11, 47. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Zheng, J.; Cheng, X.; Tian, D.; Chen, D. Changes in Tropical-Cyclone Translation Speed over the Western North Pacific. Atmosphere 2020, 11, 93. [Google Scholar] [CrossRef]
- Zhang, G.; Murakami, H.; Knutson, T.R.; Mizuta, R.; Yoshida, K. Tropical cyclone motion in a changing climate. Sci. Adv. 2020, 6, eaaz7610. [Google Scholar] [CrossRef]
- Lee, S.-S.; Moon, J.-Y.; Wang, B.; Kim, H.-J. Subseasonal Prediction of Extreme Precipitation over Asia: Boreal Summer Intraseasonal Oscillation Perspective. J. Clim. 2017, 30, 2849–2865. [Google Scholar] [CrossRef]
- Lubis, S.W.; Jacobi, C. The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int. J. Climatol. 2015, 35, 1465–1483. [Google Scholar] [CrossRef]
- Muhammad, F.R.; Lubis, S.W. Impacts of the boreal summer intraseasonal oscillation on precipitation extremes in Indonesia. Int. J. Climatol. 2022, 43, 1576–1592. [Google Scholar] [CrossRef]
- Ren, P.; Ren, H.L.; Fu, J.X.; Wu, J.; Du, L. Impact of Boreal Summer Intraseasonal Oscillation on Rainfall Extremes in Southeastern China and its Predictability in CFSv2. J. Geophys. Res. Atmos. 2018, 123, 4423–4442. [Google Scholar] [CrossRef]
- Schreck, C.J.; Molinari, J.; Mohr, K.I. Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific. J. Atmos. Sci. 2011, 68, 195–209. [Google Scholar] [CrossRef]
- Kubota, H.; Kosaka, Y.; Xie, S. A 117-year long index of the Pacific-Japan pattern with application to interdecadal variability. Int. J. Climatol. 2015, 36, 1575–1589. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, X.; Sun, J.; Wu, D.; Li, L.; Hu, X.; Ren, Z.; Guo, Y.; Yu, L.; Hui, Z.; Xiong, X. Poleward Migration of Spatial Asymmetry in Tropical Cyclone Precipitation over the Western North Pacific. Atmosphere 2023, 14, 1074. https://doi.org/10.3390/atmos14071074
Ju X, Sun J, Wu D, Li L, Hu X, Ren Z, Guo Y, Yu L, Hui Z, Xiong X. Poleward Migration of Spatial Asymmetry in Tropical Cyclone Precipitation over the Western North Pacific. Atmosphere. 2023; 14(7):1074. https://doi.org/10.3390/atmos14071074
Chicago/Turabian StyleJu, Xia, Jia Sun, Dijia Wu, Lingli Li, Xiaomin Hu, Zhaopeng Ren, Yanliang Guo, Long Yu, Zhenli Hui, and Xuejun Xiong. 2023. "Poleward Migration of Spatial Asymmetry in Tropical Cyclone Precipitation over the Western North Pacific" Atmosphere 14, no. 7: 1074. https://doi.org/10.3390/atmos14071074
APA StyleJu, X., Sun, J., Wu, D., Li, L., Hu, X., Ren, Z., Guo, Y., Yu, L., Hui, Z., & Xiong, X. (2023). Poleward Migration of Spatial Asymmetry in Tropical Cyclone Precipitation over the Western North Pacific. Atmosphere, 14(7), 1074. https://doi.org/10.3390/atmos14071074