Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Investigated Dwellings
2.2. Measurement of Indoor Radon and Thoron Concentrations (Long-Term and Short-Term)
2.3. Questionnaire Estimation
3. Results and Discussions
3.1. Estimation of Indoor Radon and Thoron Concentrations in Dwellings of Dhaka City
3.2. Potential Dwellings/Indoor Radon Factors for Dhaka City: Questionnaire Analysis
3.3. Preliminary Indoor Radon and Thoron Equilibrium Factors (RnF, TnF) in Dhaka City
3.4. Internal Population Exposures for Dhaka City: Annual Effective Dose from Indoor Radon and Thoron
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, S.R.; Alam, M.K. Countrywide Radiation Dose in Different Locations, Dwellings and Free Spaces of Bangladesh. Radiat. Prot. Dosim. 2014, 162, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.I.; Chowdhury, M.R.; Alam, M.N. Study of Radon Exhalation from Soil to Ascertain the Elevated Levels of Background Radiation of Bangladesh. Radioprotection 2002, 37, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Hamid, B.N.; Chowdhury, M.I.; Alam, M.N.; Islam, M.N. Study of Natural Radionuclide Concentrations in an Area of Elevated Radiation Background in the Northern Districts of Bangladesh. Radiat. Prot. Dosim. 2002, 98, 227–230. [Google Scholar] [CrossRef]
- IAEA—International Atomic Energy Agency. Environmental Monitoring for Radiological Safety in South-East Asia, the Far East and the Pacific Regions; IAEA-TECDOC-228; IAEA: Vienna, Austria, 1980. [Google Scholar]
- Mollah, A.S.; Rahman, M.M.; Koddus, M.A. Measurement of High Natural Background Radiation Levels by TLD at Cox’s Bazar Coastal Areas in Bangladesh. Radiat. Prot. Dosim. 1987, 18, 39–41. [Google Scholar] [CrossRef]
- Khan, R.; Islam, H.M.T.; Islam, A.R.M.T. Mechanism of Elevated Radioactivity in Teesta River Basin from Bangladesh: Radiochemical Characterization, Provenance and Associated Hazards. Chemosphere 2021, 264, 128459. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Janik, M.; Sakoda, A.; Iimoto, T. Status of Radon Exposure in Bangladeshi Locations and Dwellings. Environ. Monit. Assess. 2021, 193, 770. [Google Scholar] [CrossRef] [PubMed]
- Porstendörfer, J. Properties and Behaviour of Radon and Thoron and Their Decay Products in the Air. J. Aerosol Sci. 1994, 25, 219–263. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Radon: Agency for Toxic Substances and Disease Registry (ATSDR); ATSDR: Atlanta, GA, USA, 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp145.pdf (accessed on 25 April 2023).
- Gaskin, J.; Coyle, D.; Whyte, J.; Krewksi, D. Global Estimate of Lung Cancer Mortality Attributable to Residential Radon. Environ. Health Perspect. 2018, 126, 057009. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Handbook on Indoor Radon; WHO: Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf (accessed on 25 April 2023).
- Farid, S.M. Equilibrium Factor and Dosimetry of Radon by CR-39 Nuclear Track Detector. Radiat. Prot. Dosim. 1993, 50, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Farid, S.M. Measurement of Concentrations of Radon and Its Daughters in Indoor Atmosphere Using CR-39 Nuclear Track Detector. Nucl. Tracks Radiat. Meas. 1993, 22, 331–334. [Google Scholar] [CrossRef]
- Hamid Khan, M.A.; Chowdhury, M.S. Radon Measurements in Some Areas in Bangladesh. Radiat. Meas. 2008, 43 (Suppl. 1), S410–S413. [Google Scholar] [CrossRef]
- Haque, A.K.F.; Islam, G.S.; Uddin, M.R.; Islam, M.A. Indoor and Underground Radon Activity in the Northern Part of Bangladesh: A Preliminary Study. Int. J. Radiat. Appl. Instrum. Part D 1991, 18, 341–344. [Google Scholar] [CrossRef]
- Islam, G.S.; Islam, M.A.; Farid, S.M.; Rahman, A. A Study of Radon Activity inside Some Houses in Bangladesh. Int. J. Radiat. Appl. Instrum. Part D 1988, 15, 551–554. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Chowdhury, M.S. The Measurement of Radon Working Levels at a Mineral Separation Pilot Plant in Cox’s Bazar, Bangladesh. Health Phys. 2003, 85, 466–470. [Google Scholar] [CrossRef]
- Srivastava, A.; Zaman, M.R.; Dwivedi, K.K.; Ramachandran, T.V. Indoor Radon Level in the Dwellings of the Rajshahi and Chuadanga Regions of Bangladesh. Radiat. Meas. 2001, 34, 497–499. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation. ANNEX D: Evaluation of Occupational Exposure to Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna, Austria, 2022; Volume 4. [Google Scholar]
- Swapan, M.; Zaman, A.; Ahsan, T.; Ahmed, F. Transforming Urban Dichotomies and Challenges of South Asian Megacities: Rethinking Sustainable Growth of Dhaka, Bangladesh. Urban Sci. 2017, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Bangladesh Bureau of Statistics. Population & Housing Census 2011, Zila Report: Dhaka; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2015; Available online: http://203.112.218.65:8008/WebTestApplication/userfiles/Image/PopCenZilz2011/Zila_Dhaka.pdf (accessed on 25 April 2023).
- Asaduzzaman, K.; Mannan, F.; Khandaker, M.U.; Farook, M.S.; Elkezza, A.; Amin, Y.B.M.; Sharma, S.; Kassim, H.B.A. Assessment of Natural Radioactivity Levels and Potential Radiological Risks of Common Building Materials Used in Bangladeshi Dwellings. PLoS ONE 2015, 10, e0140667. [Google Scholar] [CrossRef] [Green Version]
- Tokonami, S.; Takahashi, H.; Kobayashi, Y.; Zhuo, W.; Hulber, E. Up-to-Date Radon-Thoron Discriminative Detector for a Large Scale Survey. Rev. Sci. Instrum. 2005, 76, 113505. [Google Scholar] [CrossRef]
- Janik, M.; Al-Azmi, D.; Sahoo, S.K. The Screening Indoor Radon and Preliminary Study of Indoor Thoron Concentration Levels in Kuwait. Radiat. Prot. Dosim. 2018, 181, 246–254. [Google Scholar] [CrossRef]
- Pornnumpa, C.; Oyama, Y.; Iwaoka, K.; Hosoda, M.; Tokonami, S. Development of Radon and Thoron Exposure Systems at Hirosaki University. Radiat. Environ. Med. 2018, 7, 13. [Google Scholar]
- Kranrod, C.; Tamakuma, Y.; Hosoda, M.; Tokonami, S. Importance of Discriminative Measurement for Radon Isotopes and Its Utilization in the Environment and Lessons Learned from Using the RADUET Monitor. Int. J. Environ. Res. Public Health 2020, 17, 4141. [Google Scholar] [CrossRef]
- ISO 16641:2014(E); Measurement of Radioactivity in the Environment—Air—Radon 220: Integrated Measurement Methods for the Determination of the Average Activity Concentration Using Passive Solid-State Nuclear Track Detectors. ISO: Geneva, Switzerland, 2014.
- Guo, H.; Morawska, L.; He, C.; Gilbert, D. Impact of Ventilation Scenario on Air Exchange Rates and on Indoor Particle Number Concentrations in an Air-Conditioned Classroom. Atmos. Environ. 2008, 42, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Dovjak, M.; Virant, B.; Krainer, A.; Zavrl, M.Š.; Vaupotič, J. Determination of Optimal Ventilation Rates in Educational Environment in Terms of Radon Dosimetry. Int. J. Hyg. Environ. Health 2021, 234, 113742. [Google Scholar] [CrossRef] [PubMed]
- ICRP. ICRP Occupational Intakes of Radionuclides: Part 3; ICRP Publication 137; ICRP: Ottawa, ON, Canada, 2017; Volume 46, Available online: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20137 (accessed on 25 April 2023).
- Kávási, N.; Somlai, J.; Vigh, T.; Tokonami, S.; Ishikawa, T.; Sorimachi, A.; Kovács, T. Difficulties in the Dose Estimate of Workers Originated from Radon and Radon Progeny in a Manganese Mine. Radiat. Meas. 2009, 44, 300–305. [Google Scholar] [CrossRef]
- Chen, J.; Harley, N.H. A Review of Indoor and Outdoor Radon Equilibrium Factors—Part I: 222Rn. Health Phys. 2018, 115, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Harley, N.H. A Review of Indoor and Outdoor Radon Equilibrium Factors—Part II: 220Rn. Health Phys. 2018, 115, 500–506. [Google Scholar] [CrossRef]
- Suzuki, G.; Yamaguchi, I.; Ogata, H.; Sugiyama, H.; Yonehara, H.; Kasagi, F.; Fujiwara, S.; Tatsukawa, Y.; Mori, I.; Kimura, S. A Nation-Wide Survey on Indoor Radon from 2007 to 2010 in Japan. J. Radiat. Res. 2010, 51, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iimoto, T.; Tokonami, S.; Yonehara, H.; Furuta, S.; Shimo, M. Researches and Activities on Radon/Thoron and NORM for Past 30 Years in Japan. Radiat. Environ. Med. 2021, 10, 55–66. [Google Scholar]
- Janik, M.; Bossew, P.; Hasan, M. Indoor Radon Research in the Asia-Pacific Region. Atmosphere 2023, 14, 948. [Google Scholar] [CrossRef]
- George, D.; Mallery, P. IBM SPSS Statistics 25 Step by Step: A Simple Guide and Reference, 15th ed.; Routledge: Abingdon-on-Thames, UK, 2018. [Google Scholar]
- Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Principal Component Analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef] [Green Version]
- Shahrokhi, A.; Adelikhah, M.; Chalupnik, S.; Kovács, T. Multivariate Statistical Approach on Distribution of Natural and Anthropogenic Radionuclides and Associated Radiation Indices along the North-Western Coastline of Aegean Sea, Greece. Mar. Pollut. Bull. 2021, 163, 112009. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, A.; Tondelli, A.; Fangel, J.U.; Torp, A.M.; Xu, X.; Willats, W.G.T.; Flavell, A.; Cattivelli, L.; Rasmussen, S.K. Genome-Wide Association Mapping in Winter Barley for Grain Yield and Culm Cell Wall Polymer Content Using the High-Throughput CoMPP Technique. PLoS ONE 2017, 12, e0173313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulan, L.; Stajic, J.M.; Spasic, D.; Forkapic, S. Radon Levels and Indoor Air Quality after Application of Thermal Retrofit Measures—A Case Study. Air Qual. Atmos. Health 2023, 16, 363–373. [Google Scholar] [CrossRef]
- Choi, J.; Hong, H.; Lee, J.; Kim, S.; Kim, G.; Park, B.; Cho, E.; Lee, C. Comparison of Indoor Radon Reduction Effects Based on Apartment Housing Ventilation Methods. Atmosphere 2022, 13, 204. [Google Scholar] [CrossRef]
- Iimoto, T. Time Variation of the Radon Equilibrium Factor in a Reinforced Concrete Dwelling. Radiat. Prot. Dosim. 2000, 92, 319–321. [Google Scholar] [CrossRef]
- Sanada, T. Measurement of Indoor Thoron Gas Concentrations Using a Radon-Thoron Discriminative Passive Type Monitor: Nationwide Survey in Japan. Int. J. Environ. Res. Public Health 2021, 18, 1299. [Google Scholar] [CrossRef]
- Urosevic, V.; Nikezic, D.; Vulovic, S. A Theoretical Approach to Indoor Radon and Thoron Distribution. J. Environ. Radioact. 2008, 99, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, W.; Chen, B.; Wei, M. Estimation of Indoor 220Rn Progeny Concentrations with 220Rn Measurements. Radiat. Prot. Dosim. 2010, 141, 408–411. [Google Scholar] [CrossRef]
- McLaughlin, J. An Overview of Thoron and Its Progeny in the Indoor Environment. Radiat. Prot. Dosim. 2010, 141, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Pervin, S.; Yeasmin, S.; Khandaker, M.U.; Begum, A. Radon Concentrations in Indoor and Outdoor Environments of Atomic Energy Centre Dhaka, Bangladesh, and Concomitant Health Hazards. Front. Nucl. Eng. 2022, 1, 901818. [Google Scholar] [CrossRef]
- Cucu, M.; Dupleac, D. The Impact of Ventilation Rate on Radon Concentration Inside High-Rise Apartment Buildings. Radiat. Prot. Dosim. 2022, 198, 290–298. [Google Scholar] [CrossRef]
- Zhao, Y.; Tao, P.; Zhang, B.; Huan, C. Contribution of Chinese Hot Pot and Barbecue Restaurants on Indoor Environmental Parameters. Aerosol Air Qual. Res. 2020, 20, 2925–2940. [Google Scholar] [CrossRef]
- Deng, N.; Fan, M.; Hao, R.; Zhang, A.; Li, Y. Field Measurements and Analysis on Temperature, Relative Humidity, Airflow Rate and Oil Fume Emission Concentration in a Typical Campus Canteen Kitchen in Tianjin, China. Appl. Sci. 2022, 12, 11755. [Google Scholar] [CrossRef]
- Ravindra, K.; Agarwal, N.; Kaur-Sidhu, M.; Mor, S. Appraisal of Thermal Comfort in Rural Household Kitchens of Punjab, India and Adaptation Strategies for Better Health. Environ. Int. 2019, 124, 431–440. [Google Scholar] [CrossRef]
- Janik, M.; Omori, Y.; Yonehara, H. Influence of Humidity on Radon and Thoron Exhalation Rates from Building Materials. Appl. Radiat. Isot. 2015, 95, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Tokonami, S.; Yamada, Y.; Akiba, S. Main Meteorological Parameters to Influence Indoor Radon Level. Radioisotopes 2002, 51, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Yarmoshenko, I.V.; Onishchenko, A.D.; Malinovsky, G.P.; Vasilyev, A.V.; Nazarov, E.I.; Zhukovsky, M.V. Radon Concentration in Conventional and New Energy Efficient Multi-Storey Apartment Houses: Results of Survey in Four Russian Cities. Sci. Rep. 2020, 10, 18136. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Abbass, R.A.; Nogueira, T.; Brand, V.S.; Wu, H.W.; Abulude, F.O.; Adelodun, A.A.; Anand, P.; Andrade, M.d.F.; et al. In-Kitchen Aerosol Exposure in Twelve Cities across the Globe. Environ. Int. 2022, 162, 107155. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Shaikh, M.A.A.; Saha, B.; Shahrukh, S.; Jawaa, Z.T.; Khan, M.F. Seasonal Changes and Respiratory Deposition Flux of PM2.5 and PM10 Bound Metals in Dhaka, Bangladesh. Chemosphere 2022, 309, 136794. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.M.; Gurley, E.S.; Crabtree-Ide, C.; Salje, H.; Yoo, E.H.; Mu, L.; Akter, N.; Ram, P.K. Air Pollution Dispersion from Biomass Stoves to Neighboring Homes in Mirpur, Dhaka, Bangladesh. BMC Public Health 2019, 19, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorimachi, A.; Tokonami, S.; Omori, Y.; Janik, M.; Iwaoka, K.; Ishikawa, T.; Sun, Q. Characteristics of Indoor Radon and Thoron Concentrations in Cave Dwellings in Gansu Province, China. Radiat. Prot. Dosim. 2019, 184, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. A Review of Radon Exposure in Non-Uranium Mines—Estimation of Potential Radon Exposure in Canadian Mines. Health Phys. 2023, 124, 244–256. [Google Scholar] [CrossRef] [PubMed]
- UNSCEAR. Sources, Effects and Risks of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna, Austria, 2008; Volume 1. [Google Scholar]
- Hosoda, M.; Kudo, H.; Iwaoka, K.; Yamada, R.; Suzuki, T.; Tamakuma, Y.; Tokonami, S. Characteristic of Thoron (220Rn) in Environment. Appl. Radiat. Isot. 2017, 120, 7–10. [Google Scholar] [CrossRef] [PubMed]
Location | Parameter | Radon Concentration (Bqm−3) | Thoron Concentration (Bqm−3) | Reference Studies |
---|---|---|---|---|
Countrywide | Range | 3 to 2616 | Not available | [7] |
Dhaka city | Range | 37 to 170 | Not available | [13] |
Dhaka city | Range AM ± SD GM | 3–20 | 7–56 | This study |
8 ± 5 | 16 ± 12 | |||
7 | 14 |
Dwelling Types (Room Numbers) | Radon Concentration Bqm−3 | Radon Equilibrium Factor | Thoron Concentration Bqm−3 | Thoron Equilibrium Factor |
---|---|---|---|---|
Modern | 14 ± 4, 14 | 0.4 ± 0.2, 0.4 | 32 ± 12, 30 | 0.02 ± 0.01, 0.02 |
Apartment | 18 ± 3, 17 | 0.8 ± 0.2, 0.8 | 30 ± 17, 27 | 0.03 ± 0.02, 0.03 |
Traditional | 9 ± 3, 9 | 0.5 ± 0.2, 0.5 | 31 ± 16, 27 | 0.01 ± 0.0004, 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M.; Janik, M.; Pervin, S.; Iimoto, T. Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh. Atmosphere 2023, 14, 1067. https://doi.org/10.3390/atmos14071067
Hasan MM, Janik M, Pervin S, Iimoto T. Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh. Atmosphere. 2023; 14(7):1067. https://doi.org/10.3390/atmos14071067
Chicago/Turabian StyleHasan, Md. Mahamudul, Miroslaw Janik, Shikha Pervin, and Takeshi Iimoto. 2023. "Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh" Atmosphere 14, no. 7: 1067. https://doi.org/10.3390/atmos14071067
APA StyleHasan, M. M., Janik, M., Pervin, S., & Iimoto, T. (2023). Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh. Atmosphere, 14(7), 1067. https://doi.org/10.3390/atmos14071067