Estimation of Indoor 222Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Location
2.2. Site-Selection Criteria
2.3. Methods of Measurements
2.3.1. Bare LR-115 Detectors
2.3.2. Diffusion Chambers
2.4. Rn Concentration
2.5. Statistical Treatment of Data and Mapping
3. Results and Discussion
3.1. Results for Bare Detectors
3.2. Results for Diffusion Chambers
3.3. Comparing the Bare Mode Detector and the G2 Monitor Results
3.4. Rn Map in Lima
- Low: less than 50 Bq·m;
- Moderate: between 50 and 100 Bq·m;
- High: between 100 and 200 Bq·m;
- Very high: greater than 200 Bq·m.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report, Volume I: Report to the General Assembly, with Scientific Annexes-Sources; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Bochicchio, F. The radon issue: Considerations on regulatory approaches and exposure evaluations on the basis of recent epidemiological results. Appl. Radiat. Isot. 2008, 66, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Nikezic, D.; Yu, K. Are radon gas measurements adequate for epidemiological studies and case control studies of radon-induced lung cancer? Radiat. Prot. Dosim. 2005, 113, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Ramola, R.; Choubey, V.; Negi, M.; Prasad, Y.; Prasad, G. Radon occurrence in soil–gas and groundwater around an active landslide. Radiat. Meas. 2008, 43, 98–101. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Health Risks of Exposure to Radon (BEIR VI). The Health Effects of Exposure to Indoor Radon. Biological Effects of Ionizing Radiation; United Nations: New York, NY, USA, 1998. [Google Scholar]
- WHO. Protection of the Public against Exposure Indoors Due to Radon and Other Natural Sources of Radiation. Specific Safety Guide; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- UNSCEAR. Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2006 Report, Volume I: Report to the General Assembly, Scientific Annexes A and B; United Nations: New York, NY, USA, 2008. [Google Scholar]
- Lowder, W.M. Natural environmental radioactivity and radon gas. In Radon Monitoring in Radioprotection, Environmental Radioactivity and Earth Sciences; World Scientific: Singapore, 1990. [Google Scholar]
- Brenner, D. Protection against Radon-222 at Home and at Work. ICRP Publication 65; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Shakir Khan, M.; Zubair, M.; Verma, D.; Naqvi, A.; Azam, A.; Bhardwaj, M. The study of indoor radon in the urban dwellings using plastic track detectors. Environ. Earth Sci. 2011, 63, 279–282. [Google Scholar] [CrossRef]
- Rafique, M.; Rahman, S.; Rahman, S.; Jabeen, S.; Shahzad, M.I.; Rathore, M.H. Indoor radon concentration measurement in the dwellings of district Poonch (Azad Kashmir), Pakistan. Radiat. Prot. Dosim. 2010, 138, 158–165. [Google Scholar] [CrossRef]
- Da Silva, N.; Bossew, P. The planned Brazilian indoor radon survey-concepts and particular challenges. Radiat. Prot. Dosim. 2014, 162, 105–109. [Google Scholar] [CrossRef]
- Espinosa, G.; Golzarri, J.; Chavarria, A.; Castaño, V. Indoor radon measurement via Nuclear Track Methodology: A comparative study. Radiat. Meas. 2013, 50, 127–129. [Google Scholar] [CrossRef]
- Tollefsen, T.; Cinelli, G.; Bossew, P.; Gruber, V.; De Cort, M. From the European indoor radon map towards an atlas of natural radiation. Radiat. Prot. Dosim. 2014, 162, 129–134. [Google Scholar] [CrossRef]
- Poncela, L.Q.; Fernández, P.; Arozamena, J.G.; Sainz, C.; Fernández, J.; Mahou, E.S.; Matarranz, J.M.; Cascón, M. Natural gamma radiation map (MARNA) and indoor radon levels in Spain. Environ. Int. 2004, 29, 1091–1096. [Google Scholar] [CrossRef]
- National Research Council. Health Risks of Radon and Other Internally Deposited Alpha-Emitters: BEIR IV; National Academies Press: Washington, DC, USA, 1988. [Google Scholar]
- Dubois, G. An Overview of Radon Surveys in Europe; European Commission: Brussels, Belgium, 2005; pp. 1–168. [Google Scholar]
- WHO. International Radon Project: Survey on Radon Guidelines, Programmes and Activities; Technical Report; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.; Cinelli, G.; Gruber, V. Literature Review of INDOOR Radon Surveys in Europe; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Serge Didier, T.S.; Saïdou; Tokonami, S.; Hosoda, M.; Suzuki, T.; Kudo, H.; Bouba, O. Simultaneous measurements of indoor radon and thoron and inhalation dose assessment in Douala City, Cameroon. Isot. Environ. Health. Stud. 2019, 55, 499–510. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; Roca, V. Analysis by scanner of tracks produced by radon alpha particles in CR-39 detectors. Radiat. Prot. Dosim. 2020, 191, 154–159. [Google Scholar] [CrossRef]
- Loffredo, F.; Savino, F.; Amato, R.; Irollo, A.; Gargiulo, F.; Sabatino, G.; Serra, M.; Quarto, M. Indoor radon concentration and risk assessment in 27 districts of a public healthcare company in Naples, South Italy. Life 2021, 11, 178. [Google Scholar] [CrossRef]
- Loffredo, F.; Opoku-Ntim, I.; Meo, G.; Quarto, M. Indoor Radon Monitoring in Kindergarten and Primary Schools in South Italy. Atmosphere 2022, 13, 478. [Google Scholar] [CrossRef]
- Hansen, V.; Petersen, D.; Søgaard-Hansen, J.; Rigét, F.F.; Mosbech, A.; Clausen, D.S.; Mulvad, G.; Rönnqvist, T. Indoor radon survey in Greenland and dose assessment. J. Environ. Radioact. 2023, 257, 107080. [Google Scholar] [CrossRef]
- Ramachandran, T.; Eappen, K.; Shaikh, A.; Mayya, Y. Indoor radon levels and equilibrium factors in Indian dwellings. Radiat. Prot. Environ. 2001, 24, 420–422. [Google Scholar]
- Singh, S.; Mehra, R.; Singh, K. Seasonal variation of indoor radon in dwellings of Malwa region, Punjab. Atmos. Environ. 2005, 39, 7761–7767. [Google Scholar] [CrossRef]
- Virk, H. Indoor radon levels near the radioactive sites of Himachal Pradesh, India. Environ. Int. 1999, 25, 47–51. [Google Scholar] [CrossRef]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Qualitative overview of indoor radon surveys in Europe. J. Environ. Radioact. 2019, 204, 163–174. [Google Scholar] [CrossRef]
- WHO. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Mayya, Y.; Eappen, K.; Nambi, K. Methodology for mixed field inhalation dosimetry in monazite areas using a twin-cup dosemeter with three track detectors. Radiat. Prot. Dosim. 1998, 77, 177–184. [Google Scholar] [CrossRef]
- Omori, Y.; Tokonami, S.; Sahoo, S.K.; Ishikawa, T.; Sorimachi, A.; Hosoda, M.; Kudo, H.; Pornnumpa, C.; Nair, R.R.K.; Jayalekshmi, P.A.; et al. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India. J. Radiol. Prot. 2016, 37, 111. [Google Scholar] [CrossRef]
- Pérez, B.; López, M.; Palacios, D. Concentric rings formation on etched LR-115 in bare mode by unconventional exposition. Nucl. Instrum. Methods Phys. Res. B 2021, 496, 37–44. [Google Scholar] [CrossRef]
- IPEN. Reglamento de Seguridad Radiológica. Available online: https://www.ipen.gob.pe/transparencia/regulacion/normatividad/ds009_97em.pdf (accessed on 8 May 2023).
- Vilcapoma, L.L.; López Herrera, M.E.; Pereyra, P.; Palacios, D.F.; Pérez, B.; Rojas, J.; Sajo-Bohus, L. Measurement of radon in soils of Lima City-Peru during the period 2016–2017. Earth Sci. Res. J. 2019, 23, 171–183. [Google Scholar] [CrossRef]
- Mapa de Lima. Mapa de las Regiones de la Provincia de Lima. Available online: https://www.mapadelima.com/mapa-de-regiones-de-lima/ (accessed on 11 March 2023).
- INEI. Resultados Definitivos de los Censo Nacionales 2017. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1583/ (accessed on 7 May 2023).
- INGEMMET. Carta Geológica Nacional—501 Cuadrángulos Geológicos Digitales de la Carta Nacional 1960–1999; INGEMMET: Lima, Peru, 1999. [Google Scholar]
- Martínez-Martínez, J. Determinación de Procesos Litorales en Playas de Arena, Según el Contraste de los Valores Granulométricos. Boletín. Instituto Español de Oceanografía 1986, 3, 17–22. [Google Scholar]
- MINSA. Estadística Poblacional. Available online: https://www.minsa.gob.pe/reunis/data/poblacion_estimada.asp (accessed on 11 March 2023).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- SENAMHI. Mapa Climático del Perú. Available online: https://www.senamhi.gob.pe/?p=mapa-climatico-del-peru (accessed on 24 March 2023).
- CSN. Mapa de Zonificación por Municipio de Radón. Available online: https://www.csn.es/mapa-de-zonificacion-por-municipio (accessed on 11 March 2023).
- Elío, J.; Crowley, Q.; Scanlon, R.; Hodgson, J.; Zgaga, L. Estimation of residential radon exposure and definition of Radon Priority Areas based on expected lung cancer incidence. Environ. Int. 2018, 114, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.; Dowdall, A.; Long, S.; Curtin, B.; Fenton, D. Estimating population lung cancer risk from radon using a resource efficient stratified population weighted sample survey protocol–Lessons and results from Ireland. J. Environ. Radioact. 2021, 233, 106582. [Google Scholar] [CrossRef]
- Chen, J. A preliminary design of a radon potential map for Canada: A multi-tier approach. Environ. Earth Sci. 2009, 59, 775–782. [Google Scholar] [CrossRef]
- IAEA Unveils Unique World Uranium Map. Available online: https://www.iaea.org/newscenter/news/iaea-unveils-unique-world-uranium-map (accessed on 3 April 2023).
- Mishra, R.; Joshi, M.; Meisenberg, O.; Gierl, S.; Prajith, R.; Kanse, S.; Rout, R.; Sapra, B.; Mayya, Y.; Tschiersch, J. Deposition and spatial variation of thoron decay products in a thoron experimental house using the Direct Thoron Progeny Sensors. J. Radiol. Prot. 2017, 37, 379. [Google Scholar] [CrossRef]
- Mishra, R.; Zunic, Z.S.; Venoso, G.; Bochicchio, F.; Stojanovska, Z.; Carpentieri, C.; Prajith, R.; Sapra, B.; Mayya, Y.; Ishikawa, T.; et al. An evaluation of thoron (and radon) equilibrium factor close to walls based on long-term measurements in dwellings. Radiat. Prot. Dosim. 2014, 160, 164–168. [Google Scholar] [CrossRef]
- Eappen, K.; Mayya, Y. Calibration factors for LR-115 (type-II) based radon thoron discriminating dosimeter. Radiat. Meas. 2004, 38, 5–17. [Google Scholar] [CrossRef]
- Eappen, K.; Ramachandran, T.; Mayya, Y.; Nambi, K. LR-115 detector response to alpha energies above 5.0 MeV: Application to thoron dosimetry. In Proceedings of the Seventh National Symposium on Environment, Dhanbad, India, 5–7 February 1998. [Google Scholar]
- UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2006 Report, Report. Sources to Effects Assessment for Radon in Homes and Workplaces, vol. II (Annex E); United Nations: New York, NY, USA, 2009. [Google Scholar]
- Canoba, A.; Lopez, F.; Arnaud, M.; Oliveira, A.; Neman, R.; Hadler, J.; Iunes, P.; Paulo, S.; Osorio, A.; Aparecido, R.; et al. Indoor radon measurements and methodologies in Latin American countries. Radiat. Meas. 2001, 34, 483–486. [Google Scholar] [CrossRef]
- Belgaid, M.; Amrani, D. Investigations and Use of LR-115 Track Detectors for Radon Measurements. Czech Republic. July 2004. Available online: https://www.osti.gov/etdeweb/servlets/purl/20555909 (accessed on 3 April 2023).
- Pérez, B.; López, M.; Palacios, D. Theoretical and experimental study of the LR-115 detector response in a non-commercial radon monitor. Appl. Radiat. Isot. 2020, 160, 109112. [Google Scholar] [CrossRef]
- Terray, L.; Gauthier, P.J.; Breton, V.; Giammanco, S.; Sigmarsson, O.; Salerno, G.; Caltabiano, T.; Falvard, A. Radon activity in volcanic gases of Mt. Etna by passive dosimetry. J. Geophys. Res. 2020, 125, e2019JB019149. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Boev, B.; Zunic, Z.S.; Ivanova, K.; Ristova, M.; Tsenova, M.; Ajka, S.; Janevik, E.; Taleski, V.; Bossew, P. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments. Radiat. Environ. Biophys. 2016, 55, 171–183. [Google Scholar] [CrossRef]
- Elío, J.; Cinelli, G.; Bossew, P.; Gutiérrez-Villanueva, J.L.; Tollefsen, T.; De Cort, M.; Nogarotto, A.; Braga, R. First steps towards an All-European Indoor Radon Map. Nat. Hazards Earth Syst. Sci. 2019, 19, 2451–2464. [Google Scholar] [CrossRef]
- Giustini, F.; Ciotoli, G.; Rinaldini, A.; Ruggiero, L.; Voltaggio, M. Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Sci. Total Environ. 2019, 661, 449–464. [Google Scholar] [CrossRef]
- Moharram, B. The influence of mechanical vibrations of railway and car traffics on the radon exhalation using track detector technique. In Proceedings of the Seventh Conference of Nuclear Sciences & Applications, Cairo, Egypt, 6–10 February 2000. [Google Scholar] [CrossRef]
- Vaizoglu, S.A.; Güler, Ç. Indoor radon concentrations in Ankara dwellings. Indoor Built Environ. 1999, 8, 327–331. [Google Scholar] [CrossRef]
- AccuWeather. Available online: https://www.accuweather.com/es/pe/lima/264120/current-weather/264120 (accessed on 7 May 2023).
- SENAMHI. Monitoreo de la Calidad de Aire, Para Lima Metropolitana. Available online: https://www.senamhi.gob.pe/?&p=calidad-del-aire (accessed on 7 May 2023).
- ALGADE. DPR. Available online: https://algade.com/en/product/dpr-2/ (accessed on 7 May 2023).
- Kropat, G.; Bochud, F.; Jaboyedoff, M.; Laedermann, J.P.; Murith, C.; Palacios, M.; Baechler, S. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units. J. Environ. Radioact. 2015, 147, 51–62. [Google Scholar] [CrossRef]
- Ruano-Ravina, A.; Quindós-Poncela, L.; Sainz Fernández, C.; Barros-Dios, J.M. Radón interior y salud pública en España: Tiempo para la acción. Gac. Sanit. 2014, 28, 439–441. [Google Scholar] [CrossRef]
- Kropat, G.; Bochud, F.; Jaboyedoff, M.; Laedermann, J.P.; Murith, C.; Palacios, M.; Baechler, S. Major influencing factors of indoor radon concentrations in Switzerland. J. Environ. Radioact. 2014, 129, 7–22. [Google Scholar] [CrossRef]
- Kropat, G.; Bochud, F.; Jaboyedoff, M.; Laedermann, J.P.; Murith, C.; Palacios, M.; Baechler, S. Predictive analysis and mapping of indoor radon concentrations in a complex environment using kernel estimation: An application to Switzerland. Sci. Total Environ. 2015, 505, 137–148. [Google Scholar] [CrossRef] [PubMed]
District Type | Population Density (inhabitants·km) | Number of Sampled Dwellings by Grid (Minimum) |
---|---|---|
A | ≤2500 | none |
B | ≤5000 | 1 |
C | ≤10,000 | 2 |
D | ≤20,000 | 4 |
E | ≥20,000 | 6 |
Zones | District | Population Density * (inhabitants·km) | Sampled Dwellings per Grid (Minimum) | Number of Grids (Urban Zone) | Number of Monitors (Minimum) | Number of Monitors (Real) |
---|---|---|---|---|---|---|
Lima Centro | Barranco | 10,951 | 2 | 1 | 2 | 3 |
Breña | 29,561 | 6 | 1 | 6 | 16 | |
Cercado de Lima | 12,198 | 4 | 4 | 16 | 31 | |
Jesús María | 18,360 | 4 | 1 | 4 | 13 | |
La Victoria | 21,693 | 6 | 2 | 12 | 9 | |
Lince | 20,359 | 4 | 1 | 4 | 7 | |
Magdalena del Mar | 18,770 | 4 | 1 | 4 | 7 | |
Miraflores | 11,799 | 4 | 2 | 8 | 10 | |
Pueblo Libre | 22,276 | 6 | 1 | 6 | 50 | |
Rímac | 15,407 | 4 | 2 | 8 | 5 | |
San Borja | 13,141 | 4 | 2 | 8 | 11 | |
San Isidro | 6253 | 2 | 2 | 4 | 10 | |
San Luis | 16,132 | 4 | 1 | 4 | 12 | |
San Miguel | 16,851 | 4 | 2 | 8 | 35 | |
Surco | 12,087 | 4 | 7 | 28 | 22 | |
Surquillo | 29,605 | 6 | 1 | 6 | 6 | |
Lima Este | Ate | 9043 | 2 | 7 | 14 | 26 |
Cieneguilla | 167 | 0 | 1 | 0 | 0 | |
Chaclacayo | 1142 | 0 | 1 | 0 | 2 | |
El Agustino | 18,296 | 4 | 1 | 4 | 1 | |
La Molina | 2510 | 1 | 5 | 5 | 11 | |
Lurigancho | 1279 | 0 | 1 | 0 | 0 | |
San Juan de Lurigancho | 9334 | 2 | 18 | 36 | 29 | |
Santa Antita | 21,284 | 6 | 12 | 72 | 7 | |
Lima Norte | Ancon | 306 | 0 | 1 | 0 | 0 |
Carabayllo | 1222 | 0 | 1 | 0 | 0 | |
Comas | 12,039 | 4 | 10 | 40 | 42 | |
Independencia | 15,668 | 4 | 3 | 12 | 10 | |
Los Olivos | 19,666 | 4 | 4 | 16 | 51 | |
Puente Piedra | 5791 | 1 | 14 | 14 | 13 | |
San Martín de Porres | 20,881 | 4 | 7 | 28 | 28 | |
Santa Rosa | 1958 | 0 | 1 | 0 | 0 | |
Lima Sur | Chorrillos | 9427 | 2 | 9 | 18 | 4 |
Lurin | 633 | 0 | 1 | 0 | 2 | |
Pachacamac | 950 | 0 | 1 | 0 | 1 | |
Pucusana | 556 | 0 | 1 | 0 | 0 | |
Punta Hermosa | 196 | 0 | 1 | 0 | 0 | |
Punta Negra | 67 | 0 | 1 | 0 | 0 | |
San Bartolo | 206 | 0 | 1 | 0 | 0 | |
San Juan de Miraflores | 17,606 | 4 | 8 | 32 | 9 | |
Santa María del Mar | 123 | 0 | 1 | 0 | 0 | |
Villa María del Triunfo | 12,188 | 2 | 14 | 28 | 5 | |
Villa El Salvador | 6359 | 4 | 7 | 28 | 9 |
Variables | Number of Dwellings | Population Density per km | Min (Bq·m) | Max (Bq·m) | Median (Bq·m) | GM (Bq·m) | GSD (Bq·m) | ]-3*ANOVA | |||
---|---|---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | Percentage of Variation (%) | |||||||||
Zones | Lima Centro | 235 | 14,588 | 16 | 306 | 63 | 57 | 2 | 69.24 | ||
Lima Este | 58 | 13,226 | 16 | 228 | 39 | 39 | 2 | 8.57659 | 0.00002 | 8.90 | |
Lima Norte | 110 | 11,278 | 16 | 166 | 45 | 45 | 2 | 17.67 | |||
Lima Sur | 34 | 4188 | 15 | 133 | 34 | 37 | 2 | 4.19 |
Variables | Number of Dwellings | Min (Bq·m) | Max (Bq·m) | Median (Bq·m) | GM (Bq·m) | GSD (Bq·m) | ANOVA | |||
---|---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | Percentage of Variation (%) | ||||||||
Construction Age (years) | 0 to 20 | 195 | 15 | 255 | 50 | 50 | 2 | 45.99 | ||
20 to 39 | 78 | 15 | 166 | 50 | 48 | 2 | 4.58541 | 0.01082 | 16.90 | |
Over 40 | 82 | 16 | 306 | 64 | 59 | 2 | 37.12 | |||
Vehicular Traffic | Low | 240 | 15 | 306 | 50 | 51 | 2 | 65.81 | ||
Medium | 124 | 16 | 232 | 50 | 50 | 2 | 0.25429 | 0.77559 | 28.95 | |
High | 25 | 24 | 145 | 55 | 54 | 2 | 5.24 | |||
Construction Materials | Bricks | 335 | 15 | 306 | 50 | 51 | 2 | 87.75 | ||
Adobe | 10 | 16 | 145 | 37 | 43 | 2 | 0.20569 | 0.81417 | 2.55 | |
Others | 32 | 17 | 232 | 55 | 54 | 2 | 9.70 | |||
Wall Painting (years) | Over 5 | 108 | 15 | 212 | 53 | 52 | 2 | 2.03990 | 0.154371 | 44.62 |
Below 5 | 165 | 16 | 255 | 49 | 49 | 2 | 55.38 | |||
Floor Type * | Cement | 99 | 15 | 292 | 46 | 49 | 2 | 27.78 | ||
Wood | 65 | 16 | 306 | 50 | 51 | 2 | 20.27 | |||
Majolica | 146 | 16 | 255 | 54 | 51 | 2 | 0.07429 | 0.98995 | 36.31 | |
Tapestry | 12 | 16 | 125 | 64 | 53 | 2 | 2.95 | |||
Others | 55 | 18 | 186 | 55 | 51 | 2 | 12.69 |
Variables | Number of Dwellings | Min (Bq·m) | Max (Bq·m) | Median (Bq·m) | GM (Bq·m) | GSD (Bq·m) | ANOVA | |||
---|---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | Percentage of Variation (%) | ||||||||
Zones | Lima Centro | 23 | 25 | 306 | 109 | 94 | 2 | 37.39 | ||
Lima Este | 31 | 20 | 292 | 72 | 67 | 2 | 1.98629 | 0.12255 | 34.55 | |
Lima Norte | 17 | 20 | 235 | 64 | 67 | 2 | 19.98 | |||
Lima Sur | 14 | 22 | 208 | 37 | 45 | 2 | 8.08 |
Method | MAE * | RMS * | RMSE * | R |
---|---|---|---|---|
IDW | 36.358 | 4.971 | 49.546 | −0.637 |
Kriging | 32.451 | 41.474 | 43.856 | −0.240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereyra, P.; Guevara-Pillaca, C.J.; Liza, R.; Pérez, B.; Rojas, J.; Vilcapoma L., L.; Gonzales, S.; Sajo-Bohus, L.; López-Herrera, M.E.; Palacios Fernández, D. Estimation of Indoor 222Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes. Atmosphere 2023, 14, 952. https://doi.org/10.3390/atmos14060952
Pereyra P, Guevara-Pillaca CJ, Liza R, Pérez B, Rojas J, Vilcapoma L. L, Gonzales S, Sajo-Bohus L, López-Herrera ME, Palacios Fernández D. Estimation of Indoor 222Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes. Atmosphere. 2023; 14(6):952. https://doi.org/10.3390/atmos14060952
Chicago/Turabian StylePereyra, Patrizia, Cesar J. Guevara-Pillaca, Rafael Liza, Bertin Pérez, Jhonny Rojas, Luis Vilcapoma L., Susana Gonzales, Laszlo Sajo-Bohus, María Elena López-Herrera, and Daniel Palacios Fernández. 2023. "Estimation of Indoor 222Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes" Atmosphere 14, no. 6: 952. https://doi.org/10.3390/atmos14060952
APA StylePereyra, P., Guevara-Pillaca, C. J., Liza, R., Pérez, B., Rojas, J., Vilcapoma L., L., Gonzales, S., Sajo-Bohus, L., López-Herrera, M. E., & Palacios Fernández, D. (2023). Estimation of Indoor 222Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes. Atmosphere, 14(6), 952. https://doi.org/10.3390/atmos14060952