Present and Future of Heavy Rain Events in the Sahel and West Africa
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. In-Situ Rain Gauge Records
2.1.2. Gridded Data
2.1.3. Downscaled and Bias-Corrected Scenarios
2.2. Methods
2.2.1. From Grid-Cell-to-Point Data Extractions
2.2.2. Detection and Performance Assessment
- Intensity
- b.
- Timing
3. Results
3.1. Are Gridded Datasets Reliable for Monitoring Heavy Rainfall?
3.2. Projected Variability and Trend of Heavy Rain Events
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bliefernicht, J.; Berger, S.; Salack, S.; Guug, S.; Hingerl, L.; Heinzeller, D.; Mauder, M.; Steinbrecher, R.; Steup, G.; Bossa, A.; et al. The WASCAL Hydrometeorological Observatory in the Sudan Savanna of Burkina Faso and Ghana. Vadose Zone J. 2018, 17, 1–20. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Salack, S.; Bossa, A.; Bliefernicht, J.; Berger, S.; Yira, Y.; Sanoussi, K.A.; Guug, S.; Heinzeller, D.; Avocanh, A.S.; Hamadou, B.; et al. Designing Transnational Hydroclimatological Observation Networks and Data Sharing Policies in West Africa. Data Sci. J. 2019, 18, 33. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Valuing Weather and Climate: Economic Assessment of Meteorological and Hydrological Services; WMO: Geneva, Switzerland, 2015; 308p. [Google Scholar]
- Feng, S.; Hu, Q.; Qian, W. Quality control of daily meteorological data in China, 1951–2000: A new dataset. Int. J. Clim. 2004, 24, 853–870. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef] [PubMed]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Harris, I.P.D.J.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef]
- Lange, S. EartH2Observe, WFDEI, and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). Earth Syst. Dynam. 2016, 9, 627–645. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Coppola, E.; Mariotti, L. Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Clim. 2013, 33, 1805–1817. [Google Scholar] [CrossRef]
- Gehne, M.; Hamill, T.M.; Kiladis, G.N.; Trenberth, K.E. Comparison of Global Precipitation Estimates across a Range of Temporal and Spatial Scales. J. Clim. 2016, 29, 7773–7795. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Gervais, M.; Tremblay, L.B.; Gyakum, J.R.; Atallah, E. Representing Extremes in a Daily Gridded Precipitation Analysis over the United States: Impacts of Station Density, Resolution, and Gridding Methods. J. Clim. 2014, 27, 5201–5218. [Google Scholar] [CrossRef]
- Herold, N.; Behrangi, A.; Alexander, L.V. Large uncertainties in observed daily precipitation extremes over land. J. Geophys. Res. Atmos. 2017, 122, 668–681. [Google Scholar] [CrossRef]
- Ensor, L.A.; Robeson, S.M. Statistical Characteristics of Daily Precipitation: Comparisons of Gridded and Point Datasets. J. Appl. Meteorol. Clim. 2008, 47, 2468–2476. [Google Scholar] [CrossRef]
- Tozer, C.R.; Kiem, A.S.; Verdon-Kidd, D.C. On the uncertainties associated with using gridded rainfall data as a proxy for observed. Hydrol. Earth Syst. Sci. 2012, 16, 1481–1499. [Google Scholar] [CrossRef]
- Harrison, L.; Funk, C.; Peterson, P. Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett. 2019, 14, 085007. [Google Scholar] [CrossRef]
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Saley, A.I.; Salack, S.; Seidou, I.S.; Moussa, M.S.; Latif, B.A.; Ly, M.; Fodé, M. The Possible Role of the Great Green Wall Activities on the Occurrence of Climate Extremes Over the West African Sahel. Atmos. Sci. Lett. 2019, 20, e927. [Google Scholar] [CrossRef]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef]
- Salack, S.; Cornelia, K.; Giannini, A.; Sarr, B.; Omonlola, N.W.; Nouhoun, B.; Bliefernicht, J.; Kunstmann, H. Global warming-induced hybrid rainy seasons in the Sahel. Environ. Res. Lett. 2016, 11, 104008. [Google Scholar] [CrossRef]
- Sanogo, S.; Fink, A.H.; Omotosho, J.A.; Ba, A.; Redl, R.; Ermert, V. Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int. J. Clim. 2015, 35, 4589–4605. [Google Scholar] [CrossRef]
- Power, S.B.; Delage, F.; Colman, R.; Moise, A. Consensus on Twenty-First-Century Rainfall Projections in Climate Models More Widespread than Previously Thought. J. Clim. 2012, 25, 3792–3809. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected Changes in the Annual Cycle of High-Intensity Precipitation Events over West Africa for the Late Twenty-First Century*. J. Clim. 2015, 28, 6475–6488. [Google Scholar] [CrossRef]
- Amoussou, E.; Awoye, H.; Vodounon, H.S.T.; Obahoundje, S.; Camberlin, P.; Diedhiou, A.; Kouadio, K.; Mahé, G.; Houndénou, C.; Boko, M. Climate and Extreme Rainfall Events in the Mono River Basin (West Africa): Investigating Future Changes with Regional Climate Models. Water 2020, 12, 833. [Google Scholar] [CrossRef]
- Quenum, G.M.L.D.; Nkrumah, F.; Klutse, N.A.B.; Sylla, M.B. Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset. Water 2021, 13, 3506. [Google Scholar] [CrossRef]
- Hong, J.; Agustin, W.; Yoon, S.; Park, J.-S. Changes of extreme precipitation in the Philippines, projected from the CMIP6 multi-model ensemble. Weather. Clim. Extrem. 2022, 37, 100480. [Google Scholar] [CrossRef]
- Chagnaud, G.; Panthou, G.; Vischel, T.; Lebel, T. A synthetic view of rainfall intensification in the West African Sahel. Environ. Res. Lett. 2022, 17, 044005. [Google Scholar] [CrossRef]
- Ta, S.; Kouadio, K.Y.; Ali, K.E.; Toualy, E.; Aman, A.; Yoroba, F. West Africa Extreme Rainfall Events and Large-Scale Ocean Surface and Atmospheric Conditions in the Tropical Atlantic. Adv. Meteorol. 2016, 2016, 1940456. [Google Scholar] [CrossRef]
- Froidurot, S.; Diedhiou, A. Characteristics of wet and dry spells in the West African monsoon system. Atmos. Sci. Lett. 2017, 18, 125–131. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Salack, S.; Saley, I.A.; Lawson, N.Z.; Zabré, I.; Daku, E.K. Scales for rating heavy rainfall events in the West African Sahel. Weather. Clim. Extrem. 2018, 21, 36–42. [Google Scholar] [CrossRef]
- Bliefernicht, J.; Salack, S.; Waongo, M.; Annor, T.; Laux, P.; Kunstmann, H. Towards a historical precipitation database for West Africa: Overview, quality control and harmonization. Int. J. Clim. 2021, 42, 4001–4023. [Google Scholar] [CrossRef]
- Giannini, A.; Kaplan, A. The role of aerosols and greenhouse gases in Sahel drought and recovery. Clim. Chang. 2018, 152, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Knippertz, P.; Evans, M.J.; Field, P.R.; Fink, A.H.; Liousse, C.; Marsham, J.H. The possible role of local air pollution in climate change in West Africa. Nat. Clim. Chang. 2015, 5, 815–822. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. Sep–doe amp-ii reanalysis (r-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Talagrand, O. Assimilation of observations: An introduction. J. Meteor. Soc. 1997, 75, 191–209. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Chen, J.; Robertson, F.R.; Adler, R.F. Evaluation of Global Precipitation in Reanalyses. J. Appl. Meteorol. Climatol. 2008, 47, 2279–2299. [Google Scholar] [CrossRef]
- Hofer, M.; Marzeion, B.; Mölg, T. Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru). Clim. Dyn. 2012, 39, 1969–1980. [Google Scholar] [CrossRef]
- Schneider, U.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Becker, A. Global Precipitation Analysis Products of the GPCC. Global Precipitation Climatology Centre (GPCC); Deutscher Wetterdienst: Offenbach, Germany, 2018. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Novella, N.S.; Thiaw, W.M. African Rainfall Climatology Version 2 for Famine Early Warning Systems. J. Appl. Meteorol. Clim. 2013, 52, 588–606. [Google Scholar] [CrossRef]
- Basheer, M.; Elagib, N.A. Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmos. Res. 2019, 215, 128–140. [Google Scholar] [CrossRef]
- Heinzeller, D.; Dieng, D.; Smiatek, G.; Olusegun, C.; Klein, C.; Hamann, I.; Salack, S.; Bliefernicht, J.; Kunstmann, H. The WASCAL high-resolution regional climate simulation ensemble for West Africa: Concept, dissemination and assessment. Earth Syst. Sci. Data 2018, 10, 815–835. [Google Scholar] [CrossRef]
- Cucchi, M.; Weedon, G.P.; Amici, A.; Bellouin, N.; Lange, S.; Schmied, H.M.; Hersbach, H.; Buontempo, C. WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 2020, 12, 2097–2120. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Carley, I.E.; Robert, V.; Jane, S.; Sylvie, J.; Bernd, E.R.; Chris, H.D. The benefits of increasing global and regional climate simulations for European climate extremes. Geosci. Model Dev. Discuss. 2019, 13, 5583–5607. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. A K-means clustering algorithm. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing Multiple Measures of Forecast Quality. Weather. Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
- Taylor, C.M.; Belušić, D.; Guichard, F.; Parker, D.J.; Vischel, T.; Bock, O.; Harris, P.P.; Janicot, S.; Klein, C.; Panthou, G. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 2017, 544, 475–478. [Google Scholar] [CrossRef]
- Fitzpatrick, R.G.J.; Parker, D.J.; Marsham, J.H.; Rowell, D.P.; Guichard, F.M.; Taylor, C.M.; Cook, K.H.; Vizy, E.K.; Jackson, L.S.; Finney, D.; et al. What Drives the Intensification of Mesoscale Convective Systems over the West African Sahel under Climate Change? J. Clim. 2020, 33, 3151–3172. [Google Scholar] [CrossRef]
- Riede, J.O.; Posada, R.; Fink, A.H.; Kasper, F. What’s on the 5th IPCC report for West Africa? Adaption to Climate Change and Variability in Rural West Africa; Yaro, J.A., Hesselberg, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 7–24. [Google Scholar]
- Dunning, C.M.; Black, E.; Allan, R.P. Later Wet Seasons with More Intense Rainfall over Africa under Future Climate Change. J. Clim. 2018, 31, 9719–9738. [Google Scholar] [CrossRef]
- Roudier, P.; Muller, B.; D’aquino, P.; Roncoli, C.; Soumaré, M.; Batté, L.; Sultan, B. The role of climate forecasts in smallholder agriculture: Lessons from participatory research in two communities in Senegal. Clim. Risk Manag. 2014, 2, 42–55. [Google Scholar] [CrossRef]
- Hoscilo, A.; Balzter, H.; Bartholomé, E.; Boschetti, M.; Brivio, P.A.; Brink, A.; Clerici, M.; Pekel, J.F. A conceptual model for assessing rainfall and vegetation trends in sub-Saharan Africa from satellite data. Int. J. Clim. 2014, 35, 3582–3592. [Google Scholar] [CrossRef]
- Park, J.-Y.; Bader, J.; Matei, J.-Y.P.J.B.D. Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Clim. Chang. 2016, 6, 941–945. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R. Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Clim. Chang. 2015, 5, 757–760. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224. [Google Scholar]
- O’gorman, P.A. Precipitation Extremes Under Climate Change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Ajayi, V.O.; Gbobaniyi, E.O.; Egbebiyi, T.S.; Kouadio, K.; Nkrumah, F.; Quagraine, K.A.; Olusegun, C.; Diasso, U.; Dosio, A.; et al. Potential impact of 1.5 C and 2 C global warming on consecutive dry and wet days over West Africa. Environ. Res. Lett. 2018, 13, 055013. [Google Scholar] [CrossRef]
- Diallo, I.; Giorgi, F.; Deme, A.; Tall, M.; Mariotti, L.; Gaye, A.T. Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century. Clim. Dyn. 2016, 47, 3931–3954. [Google Scholar] [CrossRef]
- Nikulin, G.; Lennard, C.; Dosio, A.; Kjellström, E.; Chen, Y.; Hänsler, A.; Kupiainen, M.; Laprise, R.; Mariotti, L.; Maule, C.F.; et al. The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ. Res. Lett. 2018, 13, 065003. [Google Scholar] [CrossRef]
Type | Data | Resolution (°) | Period | Reference |
---|---|---|---|---|
In-situ | Observation | - | 1960–2016 | National meteorology and hydrology services/agencies of WASCAL member countries (www.wascal.org) |
Reanalysis | NCEP2 | 1.875° × 1.875° | 1979-present | Kanamitsu et al. [39] |
ERA-Interim | 0.75° × 0.75° | 1979-present | Dee et al. [7] | |
ERA5 | 0.25° × 0.25° | 1979-present | Hersbach et al. [40] | |
Reanalysis adjusted | WFDEI | 0.44° × 0.44° | 1979–2012 | Weedon et al. [9] |
EWEMBI | 0.5° × 0.5° | 1979–2013 | Lange [10] | |
Rain-gauges based | CPC | 0.5° × 0.5° | 1979-present | Chen et al. [14] |
GPCC | 1° × 1° 0.5° × 0.5° | 1982–2016 | Schneider et al. [44] | |
Satellite derived | TAMSAT3 | 0.0375° × 0.0375 | 1983-present | Maidment et al. [6] |
CHIRPSv2 | 0.05° × 0.05° | 1981–2016 | Funk et al. [45] | |
ARC2 | 0.1° × 0.1° | 1983-present | Novella and Thiaw [46] | |
Regional climate model | WRF12-CRTL | 0.1056° × 0.1056° | 1979–2014 | Heinzeller et al. [47] |
Earth system model/global circulation model | GFDL-ESM4 IPSL-CM6A-LR MPI-ESM1-2-HR MRI-ESM2-0 UKESM1-0-LL | 0.5° × 0.5° | 1960–2010 (Historical) 2015–2100 (SSP126 and 370 Projections) | https://www.isimip.org (accessed on 1 October 2022) |
Dataset | Category 1 (mm/Day) | Category 2 (mm/Day) | Category 3 (mm/Day) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Centroid | Confidence Interval | Centroid | Confidence Interval | Centroid | Confidence Interval | |||||||||||||||||||||
In-situ | 47 | [37;65] | 74 | [65;85] | 120 | >85 | ||||||||||||||||||||
ARC2 | 40 | [30;65] | 77 | [65;91] | 151 | >91 | ||||||||||||||||||||
CHIRPS | 27 | [22;37] | 42 | [37;47] | 63 | >47 | ||||||||||||||||||||
CPC | 35 | [27;50] | 57 | [50;64] | 93 | >64 | ||||||||||||||||||||
ERA5 | 23 | [17;35] | 44 | [35;70] | 93 | >70 | ||||||||||||||||||||
ERAI | 17 | [11;39] | 53 | [39;67] | 120 | >67 | ||||||||||||||||||||
EWEMBI | 25 | [18;41] | 51 | [41;61] | 97 | >61 | ||||||||||||||||||||
GFDL | 34 | [25;49] | 57 | [49;65] | 90 | >65 | ||||||||||||||||||||
GPCC0.5 | 38 | [30;55] | 65 | [55;75] | 111 | >75 | ||||||||||||||||||||
GPCC1 | 37 | [29;53] | 62 | [53;71] | 105 | >71 | ||||||||||||||||||||
IPSL | 30 | [22;49] | 62 | [49,75] | 130 | >75 | ||||||||||||||||||||
MPI | 27 | [21;37] | 42 | [37,48] | 67 | >48 | ||||||||||||||||||||
MRI | 31 | [23;46] | 55 | [46,63] | 93 | >63 | ||||||||||||||||||||
NCEP | 30 | [19;51] | 62 | [51;73] | 114 | >73 | ||||||||||||||||||||
TAMSAT | 16 | [13;21] | 24 | [21;27] | 35 | >27 | ||||||||||||||||||||
UKESM | 31 | [24;45] | 53 | [45,60] | 86 | >60 | ||||||||||||||||||||
WFDEI | 25 | [15;46] | 53 | [46;60] | 102 | >60 | ||||||||||||||||||||
WRF12 | 30 | [19;57] | 71 | [57;85] | 131 | >85 | ||||||||||||||||||||
1–5 | 5–10 | 10–15 | 15–20 | 20–25 | 25–30 | 30–35 | 35–40 | 40–45 | 45–50 | 50–55 | 55–60 | 60–65 | 65–70 | 70–75 | 75–80 | 80–85 | 85–90 | 90–95 | 95–100 | % |
Database | Trend | RMSE | MBE | SD |
---|---|---|---|---|
Obs | 0.44 | ---- | ---- | 4.51 |
ARC2 | −0.24 | 11.71 | −9.69 | 4.14 |
CHIRPS | −0.09 | 25.75 | −25.4 | 3.36 |
CPC | 0.12 | 15.13 | −14.65 | 3.89 |
ERA5 | 0.31 | 33.24 | −33.12 | 4.57 |
ERAI | −0.39 | 42.5 | −42.09 | 3.88 |
EWEMBI | 0.39 | 32.19 | −32.01 | 4.24 |
GFDL | −0.05 | 17.02 | −15.47 | 4.82 |
GPCC0.5 | 0.56 | 14.33 | −12.88 | 5.97 |
GPCC1 | 0.51 | 16.25 | −15.29 | 5.09 |
IPSL | −0.1 | 27.03 | −23.96 | 10.63 |
MPI | −0.03 | 26.69 | −25.95 | 4.48 |
MRI | 0.11 | 23.78 | −22.29 | 7.88 |
NCEP | 0.3 | 20.1 | −18.91 | 7.55 |
TAMSAT | 0.28 | 39.43 | −39.14 | 1.29 |
UKESM1 | 0.21 | 21.57 | −20.74 | 4.71 |
WFDEI | 0.37 | 32.27 | −32.07 | 4.1 |
WRF12 | 0.37 | 20.27 | −19.57 | 5.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saley, I.A.; Salack, S. Present and Future of Heavy Rain Events in the Sahel and West Africa. Atmosphere 2023, 14, 965. https://doi.org/10.3390/atmos14060965
Saley IA, Salack S. Present and Future of Heavy Rain Events in the Sahel and West Africa. Atmosphere. 2023; 14(6):965. https://doi.org/10.3390/atmos14060965
Chicago/Turabian StyleSaley, Inoussa Abdou, and Seyni Salack. 2023. "Present and Future of Heavy Rain Events in the Sahel and West Africa" Atmosphere 14, no. 6: 965. https://doi.org/10.3390/atmos14060965
APA StyleSaley, I. A., & Salack, S. (2023). Present and Future of Heavy Rain Events in the Sahel and West Africa. Atmosphere, 14(6), 965. https://doi.org/10.3390/atmos14060965