The Dependence of Gales on Relevant Meteorological Elements in One of the Hottest Regions of China, the Turpan Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Typical Strong Wind Processes
2.3. ERA5 Reanalysis Data
2.4. Objective Synoptic Classification
3. Results
3.1. Variations in the Occurrence of Gales
3.2. Synoptic Patterns
3.2.1. Identified Synoptic Patterns
3.2.2. The Impacts of Synoptic Patterns on Gales
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De, U.S.; Khole, M.; Dandekar, M.M. Natural hazards associated with meteorological extreme events. Nat. Hazards 2004, 31, 487–497. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, X.; Xu, Z.; Fujita, H. Emergency decision making for natural disasters: An overview. Int. J. Disaster Risk Reduct. 2018, 27, 567–576. [Google Scholar] [CrossRef]
- de Freitas, A.A.; Oda, P.S.S.; Teixeira, D.L.S.; do Nascimento Silva, P.; Mattos, E.V.; Bastos, I.R.P.; Gonçalves, W.A. Meteorological conditions and social impacts associated with natural disaster landslides in the Baixada Santista region from March 2nd–3rd, 2020. Urban Clim. 2022, 42, 101110. [Google Scholar] [CrossRef]
- Ma, X.; Liu, W.; Zhou, X.; Zhou, X.; Qin, C.; Chen, Y.; Xiang, Y.; Zhao, M. Evolution of online public opinion during meteorological disasters. Environ. Hazards 2020, 19, 375–397. [Google Scholar] [CrossRef]
- Viúdez-Moreiras, D.; Gómez-Elvira, J.; Newman, C.E.; Navarro, S.; Marin, M.; Torres, J. Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale’s wind speeds and directions. Icarus 2019, 319, 909–925. [Google Scholar] [CrossRef]
- Huai, B.J.; Wang, Y.T.; Sun, W.J.; Wang, X.Y. The unique “Regional East Gale with Blowing Snow” natural disaster in Jeminay County, Xinjiang Uygur Autonomous Region, China. Nat. Hazards 2018, 93, 1105–1108. [Google Scholar]
- Zhou, Q.J.; Li, L.; Chan, P.W.; Cheng, X.L.; Lan, C.X.; Su, J.C.; Yang, H.L. Observational Study of Wind Velocity and Structures during Supertyphoons and Convective Gales over Land Based on a 356-m-High Meteorological Gradient Tower. J. Appl. Meteorol. Climatol. 2023, 62, 103–118. [Google Scholar] [CrossRef]
- Wang, Q.X.; Li, H.J. Analysis on gale disasters of Xinjiang in recent 40 years. J. Desert Res. 2003, 23, 545. (In Chinese) [Google Scholar]
- Tang, H.; Lu, H.C.; Chu, C.J.; Sun, M.; Ju, C. Mesoscale analysis of severe downslope windstorm caused by gap jet in Tianshan Mountain canyon. Meteorol. Mon. 2020, 46, 1450–1460. (In Chinese) [Google Scholar]
- Yang, L.; Fu, R.; He, W.; He, Q.; Liu, Y. Adaptive thermal comfort and climate responsive building design strategies in dry–hot and dry–cold areas: Case study in Turpan, China. Energy Build. 2020, 209, 109678. [Google Scholar] [CrossRef]
- Falola, O.J.; Agbola, S.B. Institutional Capacity and the Roles of Key Actors in Fire Disaster Risk Reduction: The Case of Ibadan, Nigeria. Int. J. Disaster Risk Sci. 2022, 13, 716–728. [Google Scholar] [CrossRef]
- Ding, J.; Chen, Y.; Wang, Y.; Xu, X. The southeasterly gale in Tianshan Grand Canyon in Xinjiang, China: A case study. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wang, X.; Wang, X.; Zhou, S.; Gong, H. Assessment of Disaster Loss Index and Characteristics of Gale Disaster in Typical Arid and Semiarid Lands. Discret. Dyn. Nat. Soc. 2022, 2022, 9455559. [Google Scholar] [CrossRef]
- Li, X.; Xia, X.; Zhong, S.; Luo, L.; Yu, X.; Jia, J.; Zhao, K.; Li, N.; Liu, Y.; Ren, Q. Shallow foehn on the northern leeside of Tianshan Mountains and its influence on atmospheric boundary layer over Urumqi, China—A climatological study. Atmos. Res. 2020, 240, 104940. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Tveito, O.E. Classifications of Atmospheric Circulation Patterns Recent Advances and Applications. Trends Dir. Clim. Res. 2008, 1146, 105–152. [Google Scholar]
- Richman, M.B. Obliquely rotated principal components: An improved meteorological map typing technique? J. Appl. Meteorol. 1981, 20, 1145–1159. [Google Scholar] [CrossRef]
- Lund, I.A. Map-Pattern classification by statistical methods. J. Appl. Meteorol. 1963, 2, 56–65. [Google Scholar] [CrossRef]
- Brinkmann, W.A.R. Application of non-hierarchically clustered circulation components to surface weather conditions: Lake superior basin winter temperatures. Theor. Appl. Climatol. 1999, 63, 41–56. [Google Scholar] [CrossRef]
- Cheng, F.F.; Zhao, J.S. Root cause diagnosis of disturbances propagation paths by using improved convergent cross mapping. Comput. Aided Chem. Eng. 2017, 40, 1693–1698. [Google Scholar]
- Cassano, E.N.; Lynch, A.H.; Cassano, J.J.; Koslow, M.R. Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA. Clim. Res. 2006, 30, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Hewitson, B.C.; Crane, R.G. Self-Organizing Maps: Applications to synoptic climatology. Clim. Res. 2002, 22, 13–26. [Google Scholar] [CrossRef]
- Pezzi, L.P.; Cavalcanti, I.F.A. The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: A numerical study. Clim. Dyn. 2001, 17, 205–212. [Google Scholar] [CrossRef]
- Bardossy, A.; Duckstein, L.; Bogardi, I. Fuzzy rule-based classification of atmospheric circulation patterns. Int. J. Climatol. 1995, 15, 1087–1097. [Google Scholar] [CrossRef]
- Song, C.Y.; Yang, B.S. Gale disaster damage investigation process provement plan according to correlation analysis between wind speed and damage cost-Centering on disaster year book. J. Korean Soc. Saf. 2016, 31, 119–126. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, J.; Liu, S.; Liu, H.; Li, Z.; Zhang, W.; Zhai, P. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmos. Chem. Phys. 2017, 17, 3097–3110. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Song, Y.; Cai, X.; Zhang, H. Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013. Atmos. Environ. 2016, 124, 129–145. [Google Scholar] [CrossRef]
- Huth, R. A circulation classification scheme applicable in GCM studies. Theor. Appl. Climatol. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Philipp, A.; Bartholy, J.; Beck, C.; Erpicum, M.; Esteban, P.; Fettweis, X.; Tymvios, F.S. Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth 2010, 35, 360–373. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, X. Dynamical Mechanism of a Cross over Mountain Gale in Turpan. Desert Oasis Meteorol. 2006, 29, 21–23. (In Chinese) [Google Scholar]
Type | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Type 1 | 51 | 317 | 49 | 0 |
Type 2 | 139 | 150 | 143 | 47 |
Type 3 | 130 | 46 | 187 | 111 |
Type 4 | 47 | 2 | 69 | 145 |
Type 5 | 156 | 78 | 76 | 60 |
Type 6 | 36 | 8 | 54 | 123 |
Type 7 | 60 | 35 | 23 | 13 |
Type 8 | 14 | 1 | 22 | 115 |
Type 9 | 11 | 7 | 14 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Tang, H.; Zhang, X.; Hu, H. The Dependence of Gales on Relevant Meteorological Elements in One of the Hottest Regions of China, the Turpan Basin. Atmosphere 2023, 14, 1051. https://doi.org/10.3390/atmos14061051
Xu Z, Tang H, Zhang X, Hu H. The Dependence of Gales on Relevant Meteorological Elements in One of the Hottest Regions of China, the Turpan Basin. Atmosphere. 2023; 14(6):1051. https://doi.org/10.3390/atmos14061051
Chicago/Turabian StyleXu, Zhiqi, Hao Tang, Xiya Zhang, and Haibo Hu. 2023. "The Dependence of Gales on Relevant Meteorological Elements in One of the Hottest Regions of China, the Turpan Basin" Atmosphere 14, no. 6: 1051. https://doi.org/10.3390/atmos14061051
APA StyleXu, Z., Tang, H., Zhang, X., & Hu, H. (2023). The Dependence of Gales on Relevant Meteorological Elements in One of the Hottest Regions of China, the Turpan Basin. Atmosphere, 14(6), 1051. https://doi.org/10.3390/atmos14061051