Characteristics of Marine Heatwaves in the Indonesian Waters during the PDO, ENSO, and IOD Phases and Their Relationships to Net Surface Heat Flux
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of MHWs
2.2. Net Surface Heat Flux
2.3. ONI and DMI Classification
3. Results and Discussion
3.1. Characteristics of MHWs during the Cold and WARM Phases of PDO
3.2. Composite Analysis of MHW Characteristics across Different Phases of PDO, ENSO, and IOD
3.3. Linear Trend of MHWs during the Cold and Warm Phases of PDO
3.4. The Formation of MHWs Generated by Local Forcing
3.4.1. Net Surface Heat Flux
3.4.2. Components of Net Surface Heat Flux
3.5. Interannual Variations of MHWs
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2021; pp. 109–230. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/SREX-Chap3_FINAL-1.pdf (accessed on 5 March 2022).
- Iskandar, I.; Mardiansyah, W.; Lestari, D.O.; Masumoto, Y. What did determine the warming trend in the Indonesian sea? Prog. Earth Planet. Sci. 2020, 7, 20. [Google Scholar] [CrossRef]
- Kuleshov, Y.; Qi, L.; Fawcett, R.; Jones, D. On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 16101. [Google Scholar] [CrossRef] [Green Version]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Gupta, A.S.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [Green Version]
- Behrens, E.; Fernandez, D.; Sutton, P. Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales. Front. Mar. Sci. 2019, 6, 228. [Google Scholar] [CrossRef] [Green Version]
- Hobday, A.J.; Alexander, L.V.; Perkins-Kirkpatrick, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change, Climate Change 2021: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2021; Available online: https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf (accessed on 11 March 2022).
- Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 2013, 111–112, 139–156. [Google Scholar] [CrossRef]
- Jackson, J.M.; Johnson, G.C.; Dosser, H.V.; Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 2018, 45, 9757–9764. [Google Scholar] [CrossRef]
- Su, Z.; Pilo, G.S.; Corney, S.; Holbrook, N.J.; Mori, M.; Ziegler, P. Characterizing marine heatwaves in the Kerguelen Plateau region. Front. Mar. Sci. 2021, 7, 531297. [Google Scholar] [CrossRef]
- Heidemann, H.; Ribbe, J. Marine heat waves and the influence of El Niño off Southeast Queensland, Australia. Front. Mar. Sci. 2019, 6, 56. [Google Scholar] [CrossRef]
- Feng, X.; Shinoda, T. Air-sea heat flux variability in the Southeast Indian Ocean and its relation with Ningaloo Niño. Front. Mar. Sci. 2019, 6, 266. [Google Scholar] [CrossRef]
- Fewings, M.R.; Brown, K.S. Regional structure in the marine heat wave of summer 2015 off the Western United States. Front. Mar. Sci. 2019, 6, 564. [Google Scholar] [CrossRef] [Green Version]
- Gawarkiewicz, G.; Chen, K.; Forsyth, J.; Bahr, F.; Mercer, A.M.; Ellertson, A.; Fratantoni, P.; Seim, H.; Haines, S.; Han, L. Characteristics of an advective marine heatwave in the Middle Atlantic Bight in early 2017. Front. Mar. Sci. 2019, 6, 712. [Google Scholar] [CrossRef] [Green Version]
- Fordyce, A.J.; Ainsworth, T.D.; Heron, S.F.; Leggat, W. Marine heatwave hotspots in coral reef environments: Physical drivers, ecophysiological outcomes and impact upon structural complexity. Front. Mar. Sci. 2019, 6, 498. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, G.A.; Nowicki, R.J.; Olsen, Y.S.; Strydom, S.; Fraser, M.W.; Sinclair, E.A.; Statton, J.; Hovey, R.K.; Thomson, J.A.; Burkholder, D.A.; et al. A Systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 2019, 6, 455. [Google Scholar] [CrossRef] [Green Version]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.A.; Dowling, C.E.; Brown, J. Simmered then boiled: Multi decadal poleward shift in distribution by a temperate fish accelerates during marine heatwave. Front. Mar. Sci. 2019, 6, 407. [Google Scholar] [CrossRef] [Green Version]
- Strub, P.T.; James, C.; Montecino, V.; Rutllant, J.A.; Blanco, J.L. Ocean circulation along the Southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanog. 2019, 172, 159–198. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Mondardini, L.; Alestra, T.; Gerrity, S.; Tait, L.; South, P.; Lilley, S.A.; Sciel, D.R. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 2019, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Brauko, K.M.; Cabral, A.; Costa, N.V.; Hayden, J.; Dias, C.E.P.; Leite, E.S.; Westphal, R.D.; Mueller, C.M.; Hall-Spencer, J.M.; Rodrigues, R.R.; et al. Marine heatwaves, sewage and eutrophication combine to trigger deoxygenation and biodiversity loss: A SW Atlantic case study. Front. Mar. Sci. 2020, 7, 590258. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, L.; Qian, S. Marine heatwaves in the Arctic region: Variation in different ice covers. Geophys. Res. Lett. 2020, 47, e2020GL089329. [Google Scholar] [CrossRef]
- Carvalho, K.S.; Smith, T.E.; Wang, S. Bering Sea marine heatwaves: Patterns, trends and connections with the Arctic. J. Hydrol. 2021, 600, 126462. [Google Scholar] [CrossRef]
- Mignot, A.; Schuckmann, K.V.; Gasparin, F.; Gennip, S.V.; Landschützer, P.; Perruche, C.; Lamouroux, J.; Amm, T. Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves. Nat. Commun. 2021, 13, 4300. [Google Scholar] [CrossRef] [PubMed]
- Doney, S.C. Plankton in warmer world. Nature 2006, 444, 695–696. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.; Pershing, A.; Brown, C.; Chen, Y.; Chiang, F.S.; Holland, D. Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Caputi, N.; Kangas, M.; Denham, A.; Feng, M.; Pearce, A.; Hetzel, Y.; Chandrapavan, A. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 2016, 6, 3583–3593. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Frölicher, T.L. Marine heatwaves exacerbate climate change impacts for fisheries in the Northeast Pacific. Sci. Rep. 2020, 10, 6678. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.C.; Mallela, J. A multifactor risk analysis of the record 2016 great barrier reef bleaching. Bull. Am. Meteorol. Soc. 2018, 99, S144–S149. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Perkins-Kirkpatrick, S.E.; Holbrook, N.J.; Bindoff, N.L. Anthropogenic influences on record 2016 marine heatwave. Bull. Am. Meteorol. Soc. 2018, 99, S44–S48. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.E.; Thoman, R.L.; Bhatt, U.S.; Bieniek, P.A.; Brettschneider, B.; Brubaker, M.; Danielson, S.; Lader, R.; Fetterer, F.; Holderied, K.; et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 2018, 99, S39–S43. [Google Scholar] [CrossRef]
- Jacox, M.G.; Alexander, M.A.; Mantua, N.J.; Scott, J.D.; Hervieux, G.; Webb, R.S.; Werner, F.E. Forcing of multiyear extreme ocean temperatures that impact California current living marine resources in 2016. Bull. Am. Meteorol. Soc. 2018, 99, S27–S33. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.; King, A.; Cougnon, E.; Grose, M.; Oliver, E.C.J.; Holbrook, N.J.; Lewis, S.C.; Pourasghar, F. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Am. Meteorol. Soc. 2019, 100, S105–S110. [Google Scholar] [CrossRef]
- Iskandar, M.; Ismail, M.F.A.; Arifin, T.; Chandra, H. Marine heatwaves of sea surface temperature off South Java. Heliyon 2021, 7, e08618. [Google Scholar] [CrossRef]
- Ismail, M.F.A. Characteristics of marine heatwaves off West Sumatra derived from high-resolution satellite data. J. Hunan Univ. Nat. Sci. 2021, 48, 130–136. [Google Scholar]
- Beliyana, E.; Ningsih, N.S.; Tarya, A. Characteristics of marine heatwaves (2008–2021) in the Savu Sea, East Nusa Tenggara. J. Phys. Conf. Ser. 2022, 2377, 012043. [Google Scholar] [CrossRef]
- Gunawan, S.R.; Ningsih, N.S.; Beliyana, E.; Tarya, A. Marine heatwaves characteristics in Spermonde Islands, west coast of South Sulawesi, Indonesia. J. Phys. Conf. Ser. 2022, 2377, 012040. [Google Scholar] [CrossRef]
- Habibullah, A.D.; Tarya, A.; Ningsih, N.S.; Putri, M.R. Marine heatwaves in the Indonesian fisheries management areas. J. Mar. Sci. Eng. 2023, 11, 161. [Google Scholar] [CrossRef]
- Molavi-Arabshahi, M.; Arpe, K. Interactions between the Caspian Sea size (level) and atmospheric circulation. Int. J. Climatol. 2022, 42, 9626–9640. [Google Scholar] [CrossRef]
- Arpe, K.; Molavi-Arabshahi, M.; Leroy, S.A.G. Wind variability over the Caspian Sea, its impact on Caspian seawater level and link with ENSO. Int. J. Climatol. 2020, 40, 6039–6054. [Google Scholar] [CrossRef]
- Ningsih, N.S.; Sakina, S.L.; Susanto, R.D.; Hanifah, F. Simulated zonal current characteristics in the southeastern tropical Indian Ocean (SETIO). Ocean Sci. 2021, 17, 1115–1140. [Google Scholar] [CrossRef]
- Yao, J.; Xiao, L.; Gou, M.; Li, C.; Lian, E.; Yang, S. Pacific decadal oscillation impact on East China precipitation and its imprint in new geological documents. Sci. China Earth Sci. 2018, 61, 473–482. [Google Scholar] [CrossRef]
- Knudsen, M.F.; Seidenkrantz, M.S.; Jacobsen, B.H.; Kuijpers, A. Tracking the Atlantic Multidecadal Oscillation through the last 8000 years. Nat. Commun. 2011, 2, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharski, F.; Parvin, A.; Rodriguez-Fonseca, B.; Farneti, R.; Martin-Rey, M.; Polo, I.; Mohino, E.; Losada, T.; Mechoso, C.R. The Teleconnection of the tropical Atlantic to Indo-Pacific sea surface temperatures on inter-annual to centennial time scales: A review of recent findings. Atmosphere 2016, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, J.; Zhang, D.; Wang, J.; Meng, X.; Liu, Y.; Yao, F. What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia? Atmos. Chem. Phys. 2022, 22, 11255–11274. [Google Scholar] [CrossRef]
- PDO Index. Available online: https://www.daculaweather.com/4_pdo_index.php (accessed on 15 February 2022).
- SST Dataset. Available online: https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/acess/avhrr/ (accessed on 21 December 2021).
- ECMWF Dataset. Available online: https://cds.climate.copernicus.eu (accessed on 4 January 2022).
- ENSO and IOD Indices. Available online: https://stateoftheocean.osmc.noaa.gov/ (accessed on 15 February 2022).
- Zhao, Z.; Marin, M.A. MATLAB toolbox to detect and analyze marine heatwaves. J. Open Source Softw. 2019, 4, 1124. [Google Scholar] [CrossRef]
- MATLAB Toolbox. Available online: https://github.com/ZijieZhaoMMHW/m_mhw1.0/ (accessed on 26 February 2022).
- Pujol, C.; Pérez-Santos, I.; Barth, A.; Alvera-Azcárate, A. Marine heatwaves offshore Central and South Chile: Understanding forcing mechanisms during the years 2016–2017. Front. Mar. Sci. 2022, 9, 800325. [Google Scholar] [CrossRef]
- Pant, V.; Girishkumar, M.S.; Bhaskar, T.V.S.U.; Ravichandran, M.; Papa, F.; Thangaprakash, V.P. Observed interannual variability of near-surface salinity in the Bay of Bengal. J. Geophys. Res. Oceans 2015, 120, 3315–3329. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introduction Survey, 2nd ed.; Elsevier: Amsterdam, The Netherland, 2006; pp. 352–353, 357, 367–368. [Google Scholar]
- Feng, M.; McPhaden, M.J.; Xie, S.P.; Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 2013, 3, 1277. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Han, W.; Li, Y.; Shinoda, T. Mechanisms for generation and development of Ningaloo Niño. J. Clim. 2018, 31, 9239–9259. [Google Scholar] [CrossRef]
- Stuart-Smith, R.D.; Brown, C.J.; Ceccarelli, D.M.; Edgar, G.J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 2018, 560, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Benthuysen, J.A.; Oliver, E.C.J.; Feng, M.; Marshall, A.G. Extreme Marine Warming Across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 2018, 123, 1301–1326. [Google Scholar] [CrossRef]
- Lubis, S.W.; Jacobi, C. The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int. J. Climatol. 2015, 35, 1465–1483. [Google Scholar] [CrossRef]
- Muhammad, F.R.; Lubis, S.W.; Setiawan, S. Impacts of the Madden–Julian oscillation on precipitation extremes in Indonesia. Int. J. Climatol. 2020, 41, 1970–1984. [Google Scholar] [CrossRef]
- Lubis, S.W.; Hagos, S.; Hermawan, E.; Respati, M.R.; Ridho, A.; Risyanto; Paski, J.A.I.; Muhammad, F.R.; Siswanto; Ratri, D.N.; et al. Record-breaking precipitation in Indonesia’s Capital of Jakarta in early January 2020 linked to the northerly surge, equatorial waves, and MJO. Geophys. Res. Lett. 2022, 49, e2022GL101513. [Google Scholar] [CrossRef]
- Muhammad, F.R.; Lubis, S.W. Impacts of the boreal summer intraseasonal oscillation on precipitation extremes in Indonesia. Int. J. Climatol. 2023, 43, 1576–1592. [Google Scholar] [CrossRef]
No. | Events |
---|---|
1. | PDO (+) and El Niño |
2. | PDO (−) and La Niña |
3. | PDO (+), El Niño, and pIOD |
4. | PDO (−), La Niña, and pIOD |
5. | PDO (−), La Niña, and nIOD |
pIOD | Neutral | nIOD | |
---|---|---|---|
El Niño | 1997 | 2016 | - |
Neutral | 2019 | 2013 | 1996 |
La Niña | - | 1988 | 1998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beliyana, E.; Ningsih, N.S.; Gunawan, S.R.; Tarya, A. Characteristics of Marine Heatwaves in the Indonesian Waters during the PDO, ENSO, and IOD Phases and Their Relationships to Net Surface Heat Flux. Atmosphere 2023, 14, 1035. https://doi.org/10.3390/atmos14061035
Beliyana E, Ningsih NS, Gunawan SR, Tarya A. Characteristics of Marine Heatwaves in the Indonesian Waters during the PDO, ENSO, and IOD Phases and Their Relationships to Net Surface Heat Flux. Atmosphere. 2023; 14(6):1035. https://doi.org/10.3390/atmos14061035
Chicago/Turabian StyleBeliyana, Erlin, Nining Sari Ningsih, Sekar Ramdanira Gunawan, and Ayi Tarya. 2023. "Characteristics of Marine Heatwaves in the Indonesian Waters during the PDO, ENSO, and IOD Phases and Their Relationships to Net Surface Heat Flux" Atmosphere 14, no. 6: 1035. https://doi.org/10.3390/atmos14061035
APA StyleBeliyana, E., Ningsih, N. S., Gunawan, S. R., & Tarya, A. (2023). Characteristics of Marine Heatwaves in the Indonesian Waters during the PDO, ENSO, and IOD Phases and Their Relationships to Net Surface Heat Flux. Atmosphere, 14(6), 1035. https://doi.org/10.3390/atmos14061035