Spatial Analysis of Heavy Metal Pollution in Road-Deposited Sediments Based on the Traffic Intensity of a Megacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Calculation of ADT
2.3. Calculation of HM Concentrations
2.4. Information Analysis
3. Results and Discussion
3.1. Worldwide Comparative Analysis
3.2. HM Concentration Forecasts
3.3. HM Enrichment Risk
3.4. Environmental Risk
3.5. Human Health Risk
4. Conclusions
- The findings confirm that a size fraction < 250 μm is the most suitable to study risks of metallic enrichment (Igeo and IPI indices), ecological risks (ERI and CERI indices), and risks on human health (HI and CRI indices) due to the HMs associated with RDSs. This is under the hypothesis that ADT is the main indicator variable for the presence of HMs in the RDS < 250 µm. Thus, the best HM indicators of the above relationship are Ni, Cu, and Pb. These metallic elements can also serve as a basis for interventions aimed at reducing HM contamination levels in road transport systems.
- From the indices used in this study, the following order of significance in the risk degree from HMs present in the RDS can be established: metallic enrichment (moderate to high) > ecological (moderate) > non-carcinogenic (non-significant) > carcinogenic (non-significant). However, the non-carcinogenic risk in the child population is significant and is mainly associated with the potential ingestion of RDSs.
- The results show the following sequences in the risk degree for the main HMs considered in this study. Metal enrichment risk: Pb > Cu > Ni > Cr. Ecological risk: Pb > Cu > Cr > Ni. Non-carcinogenic risk: Pb > Cr > Cu > Ni. Carcinogenic risk: Pb > Cr > Cu > Ni. Thus, Pb is the HM of greatest attention, and Cr gains positions for its toxicity level during the evaluation of ecological, non-carcinogenic, and carcinogenic risks, respectively.
- In the study megacity, we suggested the following ADT limits (lower and upper) for human health protection for Pb, Cu, and Ni in the RDS: 5263–43,860, 11,538–59,615, and 83,300–783,300 veh./day, respectively. Indeed, these limits in ADT tend to vary according to the type of risk analyzed (metallic enrichment, ecological, non-carcinogenic, and carcinogenic).
- The findings show that the linear regression models developed between ADT and each of the risk indices considered have a better fit (R2 > 0.910) compared to the linear regression models developed between ADT and HM concentrations (R2 > 0.322). Indeed, this improvement in the fit of the linear regression models developed is associated with the normalization of HM concentrations from the rating scales established by each of the risk indices considered. In addition, this also suggests the importance of considering other variables (e.g., land use and climate) when developing future studies on the relationship between traffic intensity, risk indices, and HM pollution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Debbage, N. Urban Morphology and Traffic Congestion: Longitudinal Evidence from US Cities. Comput. Environ. Urban Syst. 2021, 89, 101676. [Google Scholar] [CrossRef]
- Bucsky, P.; Juhász, M. Long-Term Evidence on Induced Traffic: A Case Study on the Relationship between Road Traffic and Capacity of Budapest Bridges. Transp. Res. Part A Policy Pract. 2022, 157, 244–257. [Google Scholar] [CrossRef]
- Rybak, J.; Wróbel, M.; Krzyżyńska, R.; Rogula-Kozłowska, W.; Olszowski, T. Is Poland at Risk of Urban Road Dust? Comparison Studies on Mutagenicity of Dust. Environ. Pollut. 2022, 314, 120337. [Google Scholar] [CrossRef]
- Mitchell, G.; Oduyemi, K.; Akunna, J. Road Deposited Sediment: Implications for the Performance of Filter Drains Servicing Strategic Trunk Roads. Water Sci. Technol. 2019, 80, 747–761. [Google Scholar] [CrossRef]
- Aminiyan, M.M.; Baalousha, M.; Aminiyan, F.M. Evolution of Human Health Risk Based on EPA Modeling for Adults and Children and Pollution Level of Potentially Toxic Metals in Rafsanjan Road Dust: A Case Study in a Semi-Arid Region, Iran. Environ. Sci. Pollut. Res. 2018, 25, 19767–19778. [Google Scholar] [CrossRef]
- Sofia, D.; Lotrecchiano, N.; Trucillo, P.; Giuliano, A.; Terrone, L. Novel Air Pollution Measurement System Based on Ethereum Blockchain. J. Sens. Actuator Netw. 2020, 9, 49. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain Size Distribution of Road-Deposited Sediment and Its Contribution to Heavy Metal Pollution in Urban Runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef]
- Smichowski, P.; Gómez, D.R. An Overview of Natural and Anthropogenic Sources of Ultrafine Airborne Particles: Analytical Determination to Assess the Multielemental Profiles. Appl. Spectrosc. Rev. 2023, 1, 1–27. [Google Scholar] [CrossRef]
- Celo, V.; Yassine, M.M.; Dabek-Zlotorzynska, E. Insights into Elemental Composition and Sources of Fine and Coarse Particulate Matter in Dense Traffic Areas in Toronto and Vancouver, Canada. Toxics 2021, 9, 264. [Google Scholar] [CrossRef]
- Ali-Taleshi, M.S.; Squizzato, S.; Feiznia, S.; Carabalí, G. From Dust to the Sources: The First Quantitative Assessment of the Relative Contributions of Emissions Sources to Elements (Toxic and Non-Toxic) in the Urban Roads of Tehran, Iran. Microchem. J. 2022, 181, 107817. [Google Scholar] [CrossRef]
- Al-Swadi, H.A.; Usman, A.R.A.; Al-Farraj, A.S.; Al-Wabel, M.I.; Ahmad, M.; Al-Faraj, A. Sources, Toxicity Potential, and Human Health Risk Assessment of Heavy Metals-Laden Soil and Dust of Urban and Suburban Areas as Affected by Industrial and Mining Activities. Sci. Rep. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; et al. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef] [Green Version]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud Univ.-Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Qu, J.; Li, Z.; Wu, Z.; Bi, F.; Wei, S.; Dong, M.; Hu, Q.; Wang, Y.; Yu, H.; Zhang, Y. Cyclodextrin-Functionalized Magnetic Alginate Microspheres for Synchronous Removal of Lead and Bisphenol a from Contaminated Soil. Chem. Eng. J. 2023, 461, 142079. [Google Scholar] [CrossRef]
- Ermolin, M.S.; Fedotov, P.S.; Ivaneev, A.I.; Karandashev, V.K.; Fedyunina, N.N.; Burmistrov, A.A. A Contribution of Nanoscale Particles of Road-Deposited Sediments to the Pollution of Urban Runoff by Heavy Metals. Chemosphere 2018, 210, 65–75. [Google Scholar] [CrossRef]
- Bezberdaya, L.A.; Kasimov, N.S.; Chernitsova, O.V.; Tkachenko, A.N.; Lychagin, M.Y. Heavy Metals and Metalloids in Soils, Road Dust, and Their PM10 Fractions in Sebastopol: Levels, Sources, and Pollution Risk. Eurasian Soil Sci. 2022, 55, 1871–1890. [Google Scholar] [CrossRef]
- Lloyd, L.N.; Fitch, G.M.; Singh, T.S.; Smith, J.A. Characterization of Environmental Pollutants in Sediment Collected during Street Sweeping Operations to Evaluate Its Potential for Reuse. J. Environ. Eng. 2019, 145, 04018141. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.-R.; Kim, W.-I.; Owens, G.; Kim, K.-H. Influence of Road Proximity on the Concentrations of Heavy Metals in Korean Urban Agricultural Soils and Crops. Arch. Environ. Contam. Toxicol. 2017, 72, 260–268. [Google Scholar] [CrossRef]
- Gorka, R.; Kumar, R.; Yadav, S.; Verma, A. Health Implications, Distribution and Source Apportionment of Heavy Metals in Road Deposited Dust of Jammu City in Northern India. Chemosphere 2022, 308, 136475. [Google Scholar] [CrossRef]
- Tang, Z.; Chai, M.; Cheng, J.; Jin, J.; Yang, Y.; Nie, Z.; Huang, Q.; Li, Y. Contamination and Health Risks of Heavy Metals in Street Dust from a Coal-Mining City in Eastern China. Ecotoxicol. Environ. Saf. 2017, 138, 83–91. [Google Scholar] [CrossRef]
- Dietrich, M.; Krekeler, M.P.S.; Kousehlar, M.; Widom, E. Quantification of Pb Pollution Sources in Complex Urban Environments through a Multi-Source Isotope Mixing Model Based on Pb Isotopes in Lichens and Road Sediment. Environ. Pollut. 2021, 288, 117815. [Google Scholar] [CrossRef] [PubMed]
- Botsou, F.; Sungur, A.; Kelepertzis, E.; Kypritidou, Z.; Daferera, O.; Massas, I.; Argyraki, A.; Skordas, K.; Soylak, M. Estimating Remobilization of Potentially Toxic Elements in Soil and Road Dust of an Industrialized Urban Environment. Environ. Monit. Assess. 2022, 194, 526. [Google Scholar] [CrossRef] [PubMed]
- Ibañez-Del Rivero, C.; Fry, K.L.; Gillings, M.M.; Barlow, C.F.; Aelion, C.M.; Taylor, M.P. Sources, Pathways and Concentrations of Potentially Toxic Trace Metals in Home Environments. Environ. Res. 2023, 220, 115173. [Google Scholar] [CrossRef]
- Shahab, A.; Zhang, H.; Ullah, H.; Rashid, A.; Rad, S.; Li, J.; Xiao, H. Pollution Characteristics and Toxicity of Potentially Toxic Elements in Road Dust of a Tourist City, Guilin, China: Ecological and Health Risk Assessment☆. Environ. Pollut. 2020, 266, 115419. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy Metal Pollution by Road-Deposited Sediments and Its Contribution to Total Suspended Solids in Rainfall Runoff from Intensive Industrial Areas. Environ. Pollut. 2020, 265, 115028. [Google Scholar] [CrossRef] [PubMed]
- Böckin, D.; Tillman, A.-M. Environmental Assessment of Additive Manufacturing in the Automotive Industry. J. Clean. Prod. 2019, 226, 977–987. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy Metals from Non-Exhaust Vehicle Emissions in Urban and Motorway Road Dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- del Romero-Barreiro, M.P.; Pinilla-Castañeda, R.D.; Zafra-Mejía, C.A. Temporal Assessment of the Heavy Metals (Pb and Cu) Concentration Associated with the Road Sediment: Fontibón-Barrios Unidos (Bogotá D.C., Colombia). Ing. Univ. 2015, 19, 315–333. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Y.; Cao, L.; Jiao, L.; Li, L.; Shen, Z. A Four-Way Model (FEST) for Source Apportionment: Development, Verification, and Application. J. Hazard. Mater. 2022, 426, 128009. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Heavy Metals in the Finest Size Fractions of Road-Deposited Sediments. Environ. Pollut. 2018, 239, 522–531. [Google Scholar] [CrossRef]
- Williams, J.A.; Antoine, J. Evaluation of the Elemental Pollution Status of Jamaican Surface Sediments Using Enrichment Factor, Geoaccumulation Index, Ecological Risk and Potential Ecological Risk Index. Mar. Pollut. Bull. 2020, 157, 111288. [Google Scholar] [CrossRef] [PubMed]
- Salman, S.A.; Zeid, S.A.M.; Seleem, E.-M.M.; Abdel-Hafiz, M.A. Soil Characterization and Heavy Metal Pollution Assessment in Orabi Farms, El Obour, Egypt. Bull. Natl. Res. Cent. 2019, 43, 42. [Google Scholar] [CrossRef] [Green Version]
- Denny, M.; Baskaran, M.; Burdick, S.; Tummala, C.; Dittrich, T. Investigation of Pollutant Metals in Road Dust in a Post-Industrial City: Case Study from Detroit, Michigan. Front. Environ. Sci. 2022, 10, 1431. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, J.; Cai, X.; Wu, Y.; Xuan, B. Spatial Distribution and Human Health Risk Assessment of Heavy Metals in Campus Dust: A Case Study of the University Town of Huaxi. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 986–999. [Google Scholar] [CrossRef]
- Gupta, V.; Bisht, L.; Arya, A.K.; Singh, A.P.; Gautam, S. Spatially Resolved Distribution, Sources, Exposure Levels, and Health Risks of Heavy Metals in <63 Μm Size-Fractionated Road Dust from Lucknow City, North India. Int. J. Environ. Res. Public Health 2022, 19, 12898. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Seleznev, A.A.; Yarmoshenko, I.V.; Malinovsky, G.; Konstantinova, E.Y.; Alsafi, K.G.; Sakr, A.K. Potentially Harmful Elements in Urban Surface Deposited Sediment of Ekaterinburg, Russia: Occurrence, Source Appointment and Risk Assessment. Chemosphere 2022, 307, 135898. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, X.; Xu, C.; Zhang, L.; Chen, H.; Shi, F.; Li, Y.; Liu, Y.; Zhang, B. The Health Risk Assessment of Heavy Metals (HMs) in Road Dust Based on Monte Carlo Simulation and Bio-Toxicity: A Case Study in Zhengzhou, China. Environ. Geochem. Health 2021, 43, 5135–5156. [Google Scholar] [CrossRef]
- Krupnova, T.G.; Rakova, O.V.; Gavrilkina, S.V.; Antoshkina, E.G.; Baranov, E.O.; Yakimova, O.N. Road Dust Trace Elements Contamination, Sources, Dispersed Composition, and Human Health Risk in Chelyabinsk, Russia. Chemosphere 2020, 261, 127799. [Google Scholar] [CrossRef]
- Men, C.; Wang, Y.; Liu, R.; Wang, Q.; Miao, Y.; Jiao, L.; Shoaib, M.; Shen, Z. Temporal Variations of Levels and Sources of Health Risk Associated with Heavy Metals in Road Dust in Beijing from May 2016 to April 2018. Chemosphere 2021, 270, 129434. [Google Scholar] [CrossRef] [PubMed]
- East, J.; Montealegre, J.S.; Pachon, J.E.; Garcia-Menendez, F. Air Quality Modeling to Inform Pollution Mitigation Strategies in a Latin American Megacity. Sci. Total Environ. 2021, 776, 145894. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Porta, D.; Solano-Correa, Y.T.; Tarazona-Alvarado, M.; de Villavicencio, L.A.N. Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas. CLEAN–Soil Air Water 2023, 51, 2200222. [Google Scholar] [CrossRef]
- Bustamante-Zapata, A.M.; Zafra-Mejía, C.A.; Rondón-Quintana, H.A. Influence of Vegetation on Outdoor Thermal Comfort in a High-Altitude Tropical Megacity: Climate Change and Variability Scenarios. Buildings 2022, 12, 520. [Google Scholar] [CrossRef]
- Vanegas, S.; Trejos, E.M.; Aristizábal, B.H.; Pereira, G.M.; Hernández, J.M.; Murillo, J.H.; Ramírez, O.; Amato, F.; Silva, L.F.O.; Rojas, N.Y.; et al. Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities. Atmosphere 2021, 12, 1109. [Google Scholar] [CrossRef]
- Cuéllar-Álvarez, Y.; Guevara-Luna, M.A.; Belalcázar-Cerón, L.C.; Clappier, A. Well-to-Wheels Emission Inventory for the Passenger Vehicles of Bogotá, Colombia. Int. J. Environ. Sci. Technol. 2023, 1, 4805. [Google Scholar] [CrossRef]
- Zafra, C.; Suárez, J.; Pachón, J.E. Public Health Considerations for PM10 in a High-Pollution Megacity: Influences of Atmospheric Condition and Land Coverage. Atmosphere 2021, 12, 118. [Google Scholar] [CrossRef]
- Secretaría Distrital de Movilidad de Bogotá Datos Abiertos Secretaría Distrital de Movilidad. Available online: https://datos-abiertos-sdm-movilidadbogota.hub.arcgis.com/search,%20accessed%20on%20January%2030,%202019 (accessed on 13 May 2023).
- INVIAS Serie Histórica de Tránsito Promedio Diario Actualizada TPD 2018 Publicacion. Available online: https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/6609-serie-historica-de-transito-promedio-diario-actualizada-tpd-2016-publicacion (accessed on 13 May 2023).
- Nasrollahi, H.; Ahmadi, F.; Ebadollahi, M.; Najafi Nobar, S.; Amidpour, M. The Greenhouse Technology in Different Climate Conditions: A Comprehensive Energy-Saving Analysis. Sustain. Energy Technol. Assess. 2021, 47, 101455. [Google Scholar] [CrossRef]
- dos Santos, P.R.S.; Fernandes, G.J.T.; Moraes, E.P.; Moreira, L.F.F. Tropical Climate Effect on the Toxic Heavy Metal Pollutant Course of Road-Deposited Sediments. Environ. Pollut. 2019, 251, 766–772. [Google Scholar] [CrossRef]
- Pal, S.K.; Roy, R. Evaluating Heavy Metals Emission’ Pattern on Road Influenced by Urban Road Layout. Transp. Res. Interdiscip. Perspect. 2021, 10, 100362. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, H.; Choi, K.-Y.; Hong, G.H.; Yang, D.B.; Kim, K.; Ra, K. Source Identification and Implications of Heavy Metals in Urban Roads for the Coastal Pollution in a Beach Town, Busan, Korea. Mar. Pollut. Bull. 2020, 161, 111724. [Google Scholar] [CrossRef]
- Gao, S.; Wang, X.; Li, H.; Kong, Y.; Chen, J.; Chen, Z. Heavy Metals in Road-Deposited Sediment and Runoff in Urban and Intercity Expressways. Transp. Saf. Environ. 2022, 4, tdab030. [Google Scholar] [CrossRef]
- Baum, P.; Kuch, B.; Dittmer, U. Adsorption of Metals to Particles in Urban Stormwater Runoff—Does Size Really Matter? Water 2021, 13, 309. [Google Scholar] [CrossRef]
- ISO SIST ISO 11047:1999; Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc—Flame and Electrothermal Atomic Absorption Spectrometric Methods. International Organization for Standardization: Geneva, Switzerland, 1999. Available online: https://standards.iteh.ai/catalog/standards/sist/6e5c2955-71f9-48de-be0b-58c161f04894/sist-iso-11047-1999 (accessed on 13 May 2023).
- ISO 11466:1995; Soil Quality-Extraction of Trace Elements Soluble in Aqua Regia. American National Standards Institute: Geneva, Switzerland, 2007.
- Zafra, C.; Temprano, J.; Tejero, I. The Physical Factors Affecting Heavy Metals Accumulated in the Sediment Deposited on Road Surfaces in Dry Weather: A Review. Urban Water J. 2017, 14, 639–649. [Google Scholar] [CrossRef]
- Ma, X.; Hua, M.Z.; Ji, C.; Zhang, J.; Shi, R.; Xiao, Y.; Liu, X.; He, X.; Zheng, W.; Lu, X. Rapid Screening and Quantification of Heavy Metals in Traditional Chinese Herbal Medicines Using Monochromatic Excitation Energy Dispersive X-ray Fluorescence Spectrometry. Analyst 2022, 147, 3628–3633. [Google Scholar] [CrossRef] [PubMed]
- Doustmohammadi, M.; Anderson, M. A Bayesian Regression Model for Estimating Average Daily Traffic Volumes for Low Volume Roadways. Int. J. Stat. Probab. 2018, 8, 143. [Google Scholar] [CrossRef]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Jiménez-Ballesta, R.; Zhang, J. Land-Use-Dependent Spatial Variation and Exposure Risk of Heavy Metals in Road-Deposited Sediment in Villavicencio, Colombia. Environ. Geochem. Health 2019, 41, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Krivokapić, M. Study on the Evaluation of (Heavy) Metals in Water and Sediment of Skadar Lake (Montenegro), with BCF Assessment and Translocation Ability (TA) by Trapa Natans and a Review of SDGs. Water 2021, 13, 876. [Google Scholar] [CrossRef]
- Mamat, Z.; Haximu, S.; Zhang, Z.Y.; Aji, R. An Ecological Risk Assessment of Heavy Metal Contamination in the Surface Sediments of Bosten Lake, Northwest China. Environ. Sci. Pollut. Res. 2016, 23, 7255–7265. [Google Scholar] [CrossRef]
- Tang, R.; Ma, K.; Zhang, Y.; Mao, Q. The Spatial Characteristics and Pollution Levels of Metals in Urban Street Dust of Beijing, China. Appl. Geochem. 2013, 35, 88–98. [Google Scholar] [CrossRef]
- Kumar, D.; Rajasegarar, S.; Palaniswami, M. Geospatial Estimation-Based Auto Drift Correction in Wireless Sensor Networks. ACM Trans. Sen. Netw. 2015, 11, 1–39. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Huang, J.; Huang, D.; Yang, J.; Song, Y.; Zeng, G. Heavy Metals in Road Dust from Xiandao District, Changsha City, China: Characteristics, Health Risk Assessment, and Integrated Source Identification. Environ. Sci. Pollut. Res. 2016, 23, 13100–13113. [Google Scholar] [CrossRef]
- IDECA. Infraestructura de Datos Espaciales de Bogotá. Available online: https://ideca.gov.co (accessed on 13 May 2023).
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Baptista Neto, J.A.; Rangel, C.M.A.; Da Fonseca, E.M.; Do Nascimento, M.T.L.; De Oliveira Santos, A.D.; Rodrigues, B.C.B.; De Melo, G.V. Concentrations and Physicochemical Speciation of Heavy Metals in Urban Runoff Sediment from São Gonçalo—Rio de Janeiro/Brazil. Environ. Earth Sci. 2016, 75, 1209. [Google Scholar] [CrossRef]
- Gunawardena, J.; Ziyath, A.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Mathematical Relationships for Metal Build-up on Urban Road Surfaces Based on Traffic and Land Use Characteristics. Chemosphere 2014, 99, 267–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sager, M.; Chon, H.-T.; Marton, L. Spatial Variation of Contaminant Elements of Roadside Dust Samples from Budapest (Hungary) and Seoul (Republic of Korea) Including Pt, Pd and Ir. Environ. Geochem. Health 2015, 37, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Galatioto, F.; Masey, N.; Murrells, T.; Hamilton, S.; Pommier, M. Review of Road Dust Resuspension Modelling Approaches and Comparisons Analysis for a UK Case Study. Atmosphere 2022, 13, 1403. [Google Scholar] [CrossRef]
- Apul, D.S.; Miller, E.; Jain, V. Road-Runoff Metal Concentrations in Toledo, Ohio, and Their Relation to Average Daily Traffic and Age of Pavement Overlay. Water Sci. Technol. 2010, 61, 1723–1731. [Google Scholar] [CrossRef]
- Alekseenko, V.; Alekseenko, A. The Abundances of Chemical Elements in Urban Soils. J. Geochem. Explor. 2014, 147, 245–249. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Street Dusts from Different Functional Areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and Health Risk of Some Potentially Toxic Elements (Cd, Cu, Pb and Zn) in Street Dust of Asansol, India. Ecotoxicol. Environ. Saf. 2017, 138, 231–241. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Keshavarzi, B.; Hale, B.A. Health Risk Implications of Potentially Toxic Metals in Street Dust and Surface Soil of Tehran, Iran. Ecotoxicol. Environ. Saf. 2017, 136, 92–103. [Google Scholar] [CrossRef]
- Abdel-Latif, N.M.; Saleh, I.A. Heavy Metals Contamination in Roadside Dust along Major Roads and Correlation with Urbanization Activities in Cairo, Egypt. J. Am. Sci. 2012, 8, 379–389. [Google Scholar]
- Xu, D.-M.; Zhang, J.-Q.; Yan, B.; Liu, H.; Zhang, L.-L.; Zhan, C.-L.; Zhang, L.; Zhong, P. Contamination Characteristics and Potential Environmental Implications of Heavy Metals in Road Dusts in Typical Industrial and Agricultural Cities, Southeastern Hubei Province, Central China. Environ. Sci. Pollut. Res. 2018, 25, 36223–36238. [Google Scholar] [CrossRef] [PubMed]
- Borai, E.H.; El-Sofany, E.A.; Abdel-Halim, A.S.; Soliman, A.A. Speciation of Hexavalent Chromium in Atmospheric Particulate Samples by Selective Extraction and Ion Chromatographic Determination. TrAC Trends Anal. Chem. 2002, 21, 741–745. [Google Scholar] [CrossRef]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health Risk Assessment of Heavy Metals in Road Dusts in Urban Parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef] [Green Version]
Type | Index | Equation | Criteria | Valuation | Range |
---|---|---|---|---|---|
Metal enrichment | Igeo | Igeo = log2 × [Ci/(1.5 × Bi)] | Ci = Reference HM concentration [mg/kg] | Unpolluted | Igeo < 0 0 < IPI ≤ 1 |
Bi = Background concentration for each HM [mg/kg] | Unpolluted–Moderate | 0 < Igeo < 1 1 < IPI ≤ 2 | |||
1.5 = Correction factor | Moderate | 1 < Igeo < 2 2 < IPI ≤ 3 | |||
IPI | IPI = [(Cf1) × (Cf2) × (Cf3) × … (Cfn)]1⁄n | Cfi = Ci/Bi Concentration of the reference HM for normalization [mg/kg] | Moderate–High | 2 < Igeo < 3 3 < IPI ≤ 4 | |
High | 3 < Igeo < 4 4 < IPI ≤ 5 | ||||
n = Number of HMs considered | High–Extremely high | 4 < Igeo < 5 IPI > 5 | |||
Extremely high | Igeo > 5 | ||||
Environmental risk | ERI | CERI = ∑Eri | CERI = Comprehensive potential Ecological Risk Index. Eri = Potential ecological risk factor for each HM. Tri = Toxic factor of HM (Zn = 1, Cr = 2, Pb = Cu = 5, Cd = 30) | Low | ERI < 40 CERI < 150 |
Moderate | 40 ≤ ERI < 80 150 ≤ CERI < 300 | ||||
Considerable | 80 ≤ ERI < 160 300 ≤ CERI < 600 | ||||
High–Very high | ERI ≥ 160 CERI ≥ 600 | ||||
Risk to human health | HI | HI = HQing + HQinh + HQder | HQ = Risk quotient on human health. ADDi = Average daily dose by pathway of exposure [mg/(kg × day)]. RfDi = Reference dose per HM and pathway of exposure [mg/(kg × day)] | Non-significant risk | HQ ≤ 1 HI ≤ 1 |
HQ | HQing = (ADDing)⁄RfDing HQinh = (ADDinh)⁄RfDinh HQder = (ADDder)⁄RfDder | Significant risk | HQ > 1 HI > 1 | ||
CRI | CRI = LADD × SF | LADD = Average daily dose for life [mg/(kg × day)]. SF = Emission toxicity gradient factor | Non-significant risk | CRI < 1 × 10−4 |
Fraction (μm) | ADT (veh./day) | Concentration (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|
Pb | Zn | Cu | Cd | Cr | Ni | |||
America (12.8%) | ||||||||
Median | <1000 | 52,787 | 93.5 | 317.3 | 163 | 0.10 | 81.25 | 40.0 |
Average | <1200 | 61,513 | 108 | 320 | 143 | 0.00 | 95.0 | 45.0 |
Maximum | <2000 | 130,000 | 200 | 414 | 236 | 0.50 | 203 | 58.7 |
Minimum | <63 | 10,000 | 31.3 | 183.7 | 44.7 | 0.00 | 12.9 | 35.0 |
Asia (30.8%) | ||||||||
Median | <250 | 19,851 | 134 | 316 | 170 | 2.00 | 127 | 49.9 |
Average | <922 | 39,301 | 204 | 573 | 215 | 2.13 | 183 | 49.4 |
Maximum | <2000 | 144,000 | 589 | 1585 | 510 | 4.00 | 530 | 86.0 |
Minimum | <53 | 2400 | 40.0 | 51.4 | 24.0 | 0.30 | 58.1 | 20.0 |
Europe (41.0%) | ||||||||
Median | <250 | 15,450 | 238 | 310 | 135 | 2.00 | 74.0 | 27.5 |
Average | <580 | 30,855 | 413 | 809 | 194 | 5.32 | 96.1 | 30.6 |
Maximum | <2000 | 120,000 | 2296 | 4892 | 771 | 22.0 | 232 | 67.9 |
Minimum | <10 | 1800 | 1.50 | 80.0 | 21.5 | 0.10 | 13.0 | 7.50 |
Africa (7.70%) | ||||||||
Median | <250 | 51,480 | 251 | 250 | 123 | 0.50 | 123 | 38.5 |
Average | <1113 | 44,120 | 264 | 242 | 106 | 6.20 | 122 | 32.7 |
Maximum | <2000 | 68,520 | 520 | 343 | 151 | 18.0 | 123 | 44.4 |
Minimum | <200 | 5000 | 33.6 | 125 | 29.0 | 0.00 | 119 | 9.39 |
Oceania (7.70%) | ||||||||
Median | <250 | 24,000 | 290 | 370 | 124 | - | 19.0 | - |
Average | <483 | 19,266 | 351 | 564 | 127 | - | 19.0 | - |
Maximum | <1000 | 25,000 | 511 | 1073 | 184 | - | 19.0 | - |
Minimum | <200 | 8800 | 251 | 249 | 73.0 | - | 19.0 | - |
Total documents considered worldwide (n = 39, 100%) | ||||||||
Median | <250 | 20,000 | 200 | 318 | 151 | 2.50 | 123 | 35.0 |
Average | <755 | 37,157 | 308 | 646 | 1816 | 4.50 | 128 | 40.5 |
Maximum | <2000 | 144,000 | 2296 | 4892 | 771 | 22.0 | 530 | 86.0 |
Minimum | <10 | 1800 | 1.50 | 51.4 | 21.5 | 0.00 | 12.9 | 7.50 |
This study, Bogotá/Colombia (n = 9) | ||||||||
Median | <250 | 7525 | 71.5 | 136 | 81.0 | 0.90 | - | - |
Average | <250 | 11,817 | 92.0 | 168 | 108 | 0.90 | - | - |
Maximum | <250 | 40,100 | 217 | 334 | 279 | 1.10 | - | - |
Minimum | <250 | 650 | 48.0 | 96.0 | 41.0 | 0.70 | - | - |
Sampling Site | ADT | Observed | Foretold | Error (%) | |||
---|---|---|---|---|---|---|---|
Cu | Pb | Cu | Pb | Cu | Pb | ||
Av. Boyacá-Av. Primero de Mayo | 187,600 | 827 | 1983 | 716 | 1774 | 6.20 | 10.5 |
Av. Suba-CL 100 | 157,300 | 712 | 1692 | 611 | 1386 | 14.1 | 18.1 |
Av. Boyacá-Av. Jorge Gaitán Cortés | 55,200 | 324 | 712 | 295 | 639 | 8.91 | 10.2 |
Autopista Norte-CL 200 | 49,000 | 300 | 652 | 276 | 593 | 8.10 | 9.02 |
Av. Jorge Gaitán Cortés-Av. Ciudad de Cali | 26,900 | 216 | 440 | 191 | 393 | 11.6 | 10.7 |
KR 24-CL 80 | 14,200 | 168 | 318 | 150 | 297 | 10.4 | 6.48 |
KR 13-CL 59 | 12,500 | 162 | 302 | 144 | 283 | 10.9 | 6.31 |
CL 45-KR 13 | 6900 | 140 | 248 | 124 | 235 | 11.3 | 5.11 |
KR 7-CL 183 | 4200 | 130 | 222 | 114 | 212 | 11.9 | 4.33 |
HM | Statistic | HQ Ingestion | HQ Dermal | HQ Inhalation | HI | ||||
---|---|---|---|---|---|---|---|---|---|
Children | Elderly | Children | Elderly | Children | Elderly | Children | Elderly | ||
Ni | Mean | 0.012 | 0.002 | 0.017 | 0.012 | 3.32 × 10−13 | 2.65 × 10−13 | 0.029 | 0.014 |
Median | 0.011 | 0.002 | 0.015 | 0.011 | 2.98 × 10−13 | 2.38 × 10−13 | 0.026 | 0.013 | |
Max | 0.025 | 0.005 | 0.035 | 0.025 | 6.92 × 10−13 | 5.52 × 10−13 | 0.059 | 0.030 | |
Min | 0.008 | 0.002 | 0.011 | 0.008 | 2.17 × 10−13 | 1.73 × 10−13 | 0.019 | 0.009 | |
Cr | Mean | 0.265 | 0.052 | 0.571 | 0.417 | 7.76 × 10−10 | 8.06 × 10−10 | 0.251 | 0.141 |
Median | 0.236 | 0.047 | 0.508 | 0.371 | 6.90 × 10−10 | 7.17 × 10−10 | 0.223 | 0.125 | |
Max | 0.574 | 0.113 | 1.238 * | 0.904 | 1.68 × 10−9 | 1.74 × 10−9 | 0.544 | 0.305 | |
Min | 0.166 | 0.033 | 0.359 | 0.262 | 4.87 × 10−10 | 5.06 × 10−10 | 0.158 | 0.088 | |
Cu | Mean | 0.037 | 0.007 | 0.013 | 0.010 | 1.04 × 10−12 | 1.08 × 10−12 | 0.051 | 0.017 |
Median | 0.032 | 0.006 | 0.012 | 0.008 | 8.94 × 10−13 | 9.24 × 10−13 | 0.044 | 0.015 | |
Max | 0.095 | 0.019 | 0.034 | 0.025 | 2.66 × 10−12 | 2.75 × 10−12 | 0.130 | 0.044 | |
Min | 0.019 | 0.004 | 0.007 | 0.005 | 5.31 × 10−13 | 5.49 × 10−13 | 0.026 | 0.009 | |
Pb | Mean | 0.887 | 0.175 | 0.038 | 0.028 | 2.46 × 10−11 | 2.55 × 10−11 | 0.925 | 0.203 |
Median | 0.763 | 0.150 | 0.033 | 0.024 | 2.11 × 10−11 | 2.20 × 10−11 | 0.796 | 0.174 | |
Max | 2.278 * | 0.449 | 0.098 | 0.072 | 6.32 × 10−11 | 6.57 × 10−11 | 2.376 * | 0.521 | |
Min | 0.434 | 0.086 | 0.019 | 0.014 | 1.20 × 10−11 | 1.25 × 10−11 | 0.453 | 0.099 | |
HI-total (Children) | HI-total (Elderly) | ||||||||
Mean | Median | Max | Min | Mean | Median | Max | Min | ||
1.42 | 1.19 | 3.10 | 0.654 | 0.374 | 0.321 | 0.892 | 0.218 |
Guideline | Argentina and Catalonia, Spain | Germany and Catalonia, Spain | Canada and Catalonia, Spain |
---|---|---|---|
Pb | Cu | Ni | |
Lower limit (mg/kg) | 500 | 310 | 470 |
Upper limit (mg/kg) | 60 | 60 | 50 |
Suggested ADT limits (veh./day) | |||
Upper ADT limit | 43,860 | 59,615 | 783,300 |
Lower ADT limit | 5263 | 11,538 | 83,300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goya-Heredia, A.V.; Zafra-Mejía, C.A.; Rondón-Quintana, H.A. Spatial Analysis of Heavy Metal Pollution in Road-Deposited Sediments Based on the Traffic Intensity of a Megacity. Atmosphere 2023, 14, 1033. https://doi.org/10.3390/atmos14061033
Goya-Heredia AV, Zafra-Mejía CA, Rondón-Quintana HA. Spatial Analysis of Heavy Metal Pollution in Road-Deposited Sediments Based on the Traffic Intensity of a Megacity. Atmosphere. 2023; 14(6):1033. https://doi.org/10.3390/atmos14061033
Chicago/Turabian StyleGoya-Heredia, Angélica Vanessa, Carlos Alfonso Zafra-Mejía, and Hugo Alexander Rondón-Quintana. 2023. "Spatial Analysis of Heavy Metal Pollution in Road-Deposited Sediments Based on the Traffic Intensity of a Megacity" Atmosphere 14, no. 6: 1033. https://doi.org/10.3390/atmos14061033
APA StyleGoya-Heredia, A. V., Zafra-Mejía, C. A., & Rondón-Quintana, H. A. (2023). Spatial Analysis of Heavy Metal Pollution in Road-Deposited Sediments Based on the Traffic Intensity of a Megacity. Atmosphere, 14(6), 1033. https://doi.org/10.3390/atmos14061033