Artificial Periodic Irregularities and Temperature of the Lower Thermosphere
Abstract
:1. Introduction
2. API Technique and Observations
3. Methodology and Data Processing
3.1. Methodology
3.2. Data Processing
4. Results
4.1. Temperature Profiles
4.2. Temperature Temporal Variation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gossard, E.E.; Hooke, W.H. Waves in the Atmosphere; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1975; 456p. [Google Scholar]
- Hines, C.O. Internal atmospheric gravity waves at atmospheric heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Lubken, F.-J.; von Zahn, U.; Manson, A.; Meek, C.; Hoppe, P.; Schmidlin, F.J.; Stegman, J.; Murtagh, D.P.; Ruster, R.; Schmidt, G.; et al. Means state densities, temperatures and winds during MAC/SINE and MAC/EPSILON campaign. J. Atmos. Terr. Phys. 1990, 52, 955–970. [Google Scholar] [CrossRef]
- Delgado, R.; Friedman, J.S.; Fentzke, J.T.; Raizada, S.; Tepley, C.A.; Zhou, Q. Sporadic metal atom and ion layers and their connection to chemistry and thermal structure in the mesopause region at Arecibo. J. Atmos. Sol. Terr. Phys. 2012, 74, 11–23. [Google Scholar] [CrossRef]
- Offermann, D.; Jarisch, M.; Oberheide, J.; Gusev, O.; Wohltmann, I.; Russel, J.M., III; Mlynczak, M.G. Global wave activity from upper stratosphere to lower thermosphere: A new turbopause concept. J. Atmos. Sol. Terr. Phys. 2006, 68, 1709–1729. [Google Scholar] [CrossRef]
- Tsuda, T.; Kato, S.; Yokol, T.; Inoue, T.; Yamamoto, M.; VanZand, T.E.; Fukao, S.; Sato, T. Gravity waves in the mesosphere observed with the middle and upper atmosphere radar. Radio Sci. 1990, 26, 1005–1018. [Google Scholar] [CrossRef]
- Offermann, D.; Goussev, O.; Kalicinsky, C.; Koppmann, R.; Matthes, K.; Schmidt, H.; Steinbrecht, W.; Wintel, J. A case study of multi-annual temperature oscillations in the atmosphere: Middle Europe. J. Atmos. Sol.-Terr. Phys. 2015, 135, 1–11. [Google Scholar] [CrossRef]
- Beig, G. Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response. J. Geophys. Res. Atmos. 2011, 116, A00H12. [Google Scholar] [CrossRef]
- Perminov, V.I.; Semenov, A.I.; Medvedeva, I.V.; Zheleznov, Y.A. Variability of mesopause temperature from the hydroxyl airglow observations over mid-latitudinal sites, Zvenigorod and Tory, Russia. Adv. Space Res. 2014, 54, 2511–2517. [Google Scholar] [CrossRef]
- Mertens, C.J.; Schmidlin, F.J.; Goldberg, R.A.; Remsberg, E.E.; Pesnell, W.D.; Russell, J.M.; Mlynczak, M.G.; López-Puertas, M.; Wintersteiner, P.P.; Picard, R.H.; et al. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during 2002 summer MaCWAVE campaign. Geophys. Res. Lett. 2004, 31, L03105. [Google Scholar] [CrossRef]
- Schmidlin, F.J. The inflatable sphere: A technique for the accurate measurement of middle atmosphere temperatures. J. Geophys. Res. 1991, 96, 22673–22682. [Google Scholar] [CrossRef]
- She, C.Y.; Chen, S.; Hu, Z.; Vance, J.D.; Vasoli, V.; White, M.A.; Yu, J.; Krueger, D.A. Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80–105 km) over Fort Collins, CO (41 N, 105 W). Geophys. Res. Lett. 2000, 27, 3289–3292. [Google Scholar] [CrossRef]
- Khomich, V.Y.; Semenov, A.I.; Shefov, N.N. Airglow as an Indicator of Upper Atmospheric Structure and Dynamics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Cai, X.; Yuan, T.; Zhao, Y.; Pautet, P.-D.; Taylor, M.J.; Pendleton, W.R. A coordinated investigation of the gravity wave breaking and the associated dynamical instability by a Na lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (41.7° N, 111.8° W). J. Geophys. Res. Space Phys. 2014, 119, 6852–6864. [Google Scholar] [CrossRef]
- Yuan, T.; Pautet, P.-D.; Zhao, Y.; Cai, X.; Criddle, N.R.; Taylor, M.J.; Pendleton, W.R. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah. J. Geophys. Res. Atmos. 2014, 119, 3756–3769. [Google Scholar] [CrossRef]
- Huang, K.M.; Liu, H.; Liu, A.Z.; Zhang, S.D.; Huang, C.M.; Gong, Y.; Ning, W.H. Investigation on spectral characteristics of gravity waves in the MLT using lidar observations at Andes. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028918. [Google Scholar] [CrossRef]
- Neuber, R.; von der Gathen, P.; von Zahn, U. Altitude and temperature of the mesopause at 69° N latitude in Winter. J. Geophys. Res. 1988, 93, 11093–11101. [Google Scholar] [CrossRef]
- Kirkwood, S. Lower thermosphere mean temperatures, densities and winds measured by EISCAT: Seasonal and solar cycle effects. J. Geophys. Res. 1996, 101, 5133–5148. [Google Scholar] [CrossRef]
- Nozawa, S.; Kawahara, T.D.; Saito, N.; Hall, C.M.; Tsuda, T.T.; Kawabata, T.; Wada, S.; Brekke, A.; Takahashi, T.; Fujiwara, H.; et al. Variations of the neutral temperature and sodium density between 80 and 107 km above Tromsø during the winter of 2010–2011 by a new solid-state sodium lidar. JGR Space Phys. 2014, 119, 441–451. [Google Scholar] [CrossRef]
- Kofman, W.; Lathuillere, C.; Pibaret, B. Neutral atmosphere studies in the altitude range 90–110 km using EISCAT. J. Atmos. Terr. Phys. 1986, 48, 837–847. [Google Scholar] [CrossRef]
- Belikovich, V.V.; Benediktov, E.A.; Tolmacheva, A.V.; Bakhmet’eva, N.V. Ionospheric Research by Means of Artificial Periodic Irregularities; Copernicus GmbH: Katlenburg-Lindau, Germany, 2002. [Google Scholar]
- Bakhmetieva, N.V.; Grigoriev, G.I. Study of the Mesosphere and Lower Thermosphere by the Method of Creating Artificial Periodic Irregularities of the Ionospheric Plasma. Atmosphere 2022, 13, 1346. [Google Scholar] [CrossRef]
- Belikovich, V.V.; Benediktov, E.A.; Getmantsev, G.G.; Ignat’ev, Y.A.; Komrakov, G.P. Scattering of radio waves from the artificially perturbed F region of the ionosphere (Engl. Translation). JETP Lett. 1975, 22, 243–244. [Google Scholar]
- Available online: https://ccmc.gsfc.nasa.gov/modelweb/models/msis_vitmo.php (accessed on 15 December 2022).
- Frolov, V.L.; Bakhmet’eva, N.V.; Belikovich, V.V.; Vertogradov, G.G.; Vertogradov, V.G.; Komrakov, G.P.; Kotik, D.S.; Mityakov, N.A.; Polyakov, S.V.; Rapoport, V.O.; et al. Modification of the Earth’s ionosphere by high power high frequency radio waves. Phys.-Uspekhi. 2007, 50, 315–324. [Google Scholar] [CrossRef]
- Belikovich, V.V.; Vyakhirev, V.V.; Kalinina, E.E. Studies of the ionosphere using partial reflections. Geomag. Aeron. 2004, 44, 170–174. [Google Scholar]
- Belikovich, V.V.; Benediktov, E.A.; Goncharov, N.P.; Tolmacheva, A.V. Diagnostics of the ionosphere and neutral atmosphere at E-region heights using artificial periodic inhomogeneities. J. Atmos. Sol.-Terr. Phys. 1997, 59, 2447–2460. [Google Scholar] [CrossRef]
- Benediktov, E.A.; Belikovich, V.V.; Tolmacheva, A.K. Some results of measurement of atmospheric temperature and density using artificial periodic inhomogeneities of the ionospheric plasma. Radiophys. Quantum Electron. 1998, 41, 229–235. [Google Scholar] [CrossRef]
- Tolmacheva, A.V.; Belikovich, V.V. Measurements of the temperature and density of the upper atmosphere using artificial periodic irregularities during the summer seasons of 1999–2002. Int. J. Geomagn. Aeron. 2004, 5, GI1008. [Google Scholar] [CrossRef]
- Tolmacheva, A.V.; Bakhmetieva, N.V.; Grigoriev, G.I.; Kalinina, E.E. The main results of the long-term measurements of the neutral atmosphere parameters by the artificial periodic irregularities techniques. Adv. Space Res. 2015, 56, 1185–1193. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Vyakhirev, V.D.; Grigoriev, G.I.; Egerev, M.N.; Kalinina, E.E.; Tolmacheva, A.V.; Zhemyakov, I.N.; Vinogradov, G.R.; Yusupov, K.M. Dynamics of the mesosphere and lower thermosphere based on results of observations on the SURA facility. Geomag. Aeron. 2020, 60, 96–111. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Grigoriev, G.I.; Vinogradov, G.R.; Zhemyakov, I.N.; Kalinina, E.E.; Pershin, A.V. Parameters of Atmospheric Turbulence and the Dynamics of the Lower Ionosphere in Studies at the SURA Facility. Geomag. Aeron. 2021, 61, 871–887. [Google Scholar] [CrossRef]
- Banks, P.M.; Kockarts, G. Aeronomy, Part A.; Academic Press: Cambridge, MA, USA; University of California: Los Angeles, CA, USA, 1973. [Google Scholar]
- Huuskonen, A.; Nygren, T.; Jalonen, L.L.; Bjorn, N.; Hansen, T.L.; Brekke, A. Ion composition in sporadic E layers measured by the EISCAT UHF radar. J. Geophys. Res. 1988, 93, 14603. [Google Scholar] [CrossRef]
- Kopp, E. On the abundance of metal ions in the lower ionosphere. J. Geophys. Res. Space Phys. 1997, 102, 9967–9974. [Google Scholar] [CrossRef]
- Bakhmet’eva, N.V.; Belikovich, V.V.; Egerev, M.N.; Tolmacheva, A.V. Artificial periodic irregularities, wave phenomena in the lower ionosphere, and the sporadic E layer. Radiophys. Quantum Electron. 2010, 53, 69–81. [Google Scholar] [CrossRef]
- Belikovich, V.V.; Bakhmeteva, N.V.; Kalinina, E.E.; Tolmacheva, A.V. A New method for determination of the electron number density in the E region of the ionosphere from relaxation times of artificial periodic inhomogeneities. Radiophys. Quantum Electron. 2006, 49, 669–674. [Google Scholar] [CrossRef]
- Tolmacheva, A.V.; Bakhmet’eva, N.V.; Vyakhirev, V.D.; Bubukina, V.N.; Kalinina, E.E. Altitude–time variations in electron number density in the ionospheric E layer. Radiophys. Quantum Electron. 2011, 54, 365–375. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Vyakhirev, V.D.; Kalinina, E.E.; Komrakov, G.P. Earth’s lower ionosphere during partial solar eclipses according to observations near Nizhny Novgorod. Geomagn. Aeron. 2017, 57, 58–71. [Google Scholar] [CrossRef]
- Available online: https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php (accessed on 15 December 2022).
- Bakhmetieva, N.V.; Grigoriev, G.I.; Tolmacheva, A.V.; Zhemyakov, I.N. Investigations of Atmospheric Waves in the Earth Lower Ionosphere by Means of the Method of the Creation of the Artificial Periodic Irregularities of the Ionospheric Plasma. Atmosphere 2019, 10, 450. [Google Scholar] [CrossRef]
- Tolmacheva, A.V.; Grigoriev, G.I.; Bakhmetieva, N.V. The variations of the atmospherical parameters on measurements using the artificial periodic irregularities of plasma. Russ. J. Phys. Chem. B. 2013, 7, 663–669. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Grigor’ev, G.I.; Tolmacheva, A.V. Artificial periodic irregularities, hydrodynamic instabilities, and dynamic processes in the mesosphere-lower thermosphere. Radiophys. Quantum Electron. 2011, 53, 623–637. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Grigor’ev, G.I.; Tolmacheva, A.V.; Kalinina, E.E. Atmospheric turbulence and internal gravity waves examined by the method of artificial periodic irregularities. Russ. J. Phys. Chem. B. 2018, 12, 510–521. [Google Scholar] [CrossRef]
- Bakhmet’eva, N.V.; Belikovich, V.V.; Benediktov, E.A.; Bubukina, V.N.; Goncharov, N.P.; Ignat’ev, Y.A. Investigation of acoustic gravity waves in the upper atmosphere by the artificial periodic inhomogeneities method at Nizhny Novgorod. Radiophys. Quantum Electron. 1996, 39, 224–228. [Google Scholar] [CrossRef]
- Tolmacheva, A.V.; Bakhmetieva, N.V.; Grigoriev, G.I.; Egerev, M.N. Turbopause range measured by the method of the artificial periodic irregularities. Adv. Space Res. 2019, 64, 1968–1974. [Google Scholar] [CrossRef]
- Liu, X.; Maura, J.; Hagan, E.; Roble, R.G. Local mean state changes due to gravity wave breaking modulated by the diurnal tide. J. Geophys. Res. 2000, 105, 12381–12396. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Chanin, M.L.; Wilson, R. Mesospheric temperature inversion and gravity wave breaking. Geophys. Res. Lett. 1987, 14, 933–936. [Google Scholar] [CrossRef]
- Rauthe, M.; Gerding, M.; Höffner, J.; Lübken, F.J. Lidar temperature measurements of gravity waves over Kühlungsborn (54° N) from 1 to 105 km: A winter-summer comparison. J. Geophys. Res. Atmos. 2006, 111, D24108. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Zhemyakov, I.N. Vertical plasma motions in the dynamics of the mesosphere and lower thermosphere of the Earth. Russ. J. Phys. Chem. B. 2022, 16, 990–1007. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Grigor’ev, G.I.; Tolmacheva, A.V.; Kalinina, E.E.; Egerev, M.N. Internal gravity waves in the lower thermosphere with linear temperature profile: Theory and experiment. Radiophys. Quantum Electron. 2017, 60, 103–112. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Grigoriev, G.I.; Kalinina, E.E. Acoustic gravity waves with a heterogeneous temperature profile of the neutral component in the earth’s atmosphere. Russ. J. Phys. Chem. B. 2022, 16, 499–507. [Google Scholar] [CrossRef]
- Grigor’ev, G.I.; Bakhmetieva, N.V.; Tolmacheva, A.V.; Kalinina, E.E. Relaxation time of artificial periodic irregularities of the ionospheric plasma and diffusion in the inhomogeneous atmosphere. Radiophys. Quantum Electron. 2013, 56, 187–196. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Belikovich, V.V.; Grigor’ev, G.I.; Tolmacheva, A.V. Effect of acoustic gravity waves on variations in the lower-ionosphere parameters as observed using artificial periodic inhomogeneities. Radiophys. Quantum Electron. 2002, 45, 211–219. [Google Scholar] [CrossRef]
- She, C.Y.; von Zahn, U. The concept of two-level mesopause: Support through new lidar observations. J. Geophys. Res. 1998, 103, 5855–5863. [Google Scholar] [CrossRef]
- Szewczyk, A.; Strelnikov, B.; Rapp, M.; Strelnikova, I.; Baumgarten, G.; Kaifler, N.; Dunker, T.; Hoppe, U.-P. Simultaneous observations of a mesospheric inversion layer and turbulence during the ECOMA-2010 rocket campaign. Ann. Geophys. 2013, 31, 775–785. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhmetieva, N.V.; Grigoriev, G.I.; Zhemyakov, I.N.; Kalinina, E.E. Artificial Periodic Irregularities and Temperature of the Lower Thermosphere. Atmosphere 2023, 14, 846. https://doi.org/10.3390/atmos14050846
Bakhmetieva NV, Grigoriev GI, Zhemyakov IN, Kalinina EE. Artificial Periodic Irregularities and Temperature of the Lower Thermosphere. Atmosphere. 2023; 14(5):846. https://doi.org/10.3390/atmos14050846
Chicago/Turabian StyleBakhmetieva, Nataliya V., Gennadiy I. Grigoriev, Ilia N. Zhemyakov, and Elena E. Kalinina. 2023. "Artificial Periodic Irregularities and Temperature of the Lower Thermosphere" Atmosphere 14, no. 5: 846. https://doi.org/10.3390/atmos14050846
APA StyleBakhmetieva, N. V., Grigoriev, G. I., Zhemyakov, I. N., & Kalinina, E. E. (2023). Artificial Periodic Irregularities and Temperature of the Lower Thermosphere. Atmosphere, 14(5), 846. https://doi.org/10.3390/atmos14050846