Simulation of Electron Density Disturbance in the Lower Ionosphere Caused by Thundercloud Electrostatic Fields
Abstract
:1. Introduction
2. Physical Model
2.1. Equation for Electric Field Penetration of Upper Atmosphere by Electric Charge of a Thundercloud
2.2. Thunderstorm Cloud Charge Model
2.3. Atmospheric Conductivity Profile
2.4. General Solutions of Partial Differential Equations
2.5. Boundary Conditions of the Electric Field Equation
2.6. Ion Chemistry Model of the Lower Ionosphere at Night
3. Model Results and Analysis
3.1. Distribution of Thundercloud Electric Field Penetration into the Upper Atmosphere
3.2. Quantitative Calculation of Electron Density Disturbance in Lower Ionosphere by a Thundercloud’s Electric Field
4. Discussion and Conclusions
- The thundercloud’s electric field perturbs the electron density of the lower ionosphere at night up to a height of 75 km in the vertical direction, but it generally does not exceed 80 km. The disturbance radius in the horizontal direction ranges from 50 to 75 km, and increases with increasing charge. The largest electron density disturbance occurs at an altitude of 70 km.
- Charges of 30, 50, and 100 C in a 10-5-km dipolar charge thundercloud electric field can all cause a 40% decrease in the electron density in the lower ionosphere.
- Monopolar thundercloud charges of 30 and 50 C can cause a 40% decrease in the electron density in the lower ionosphere, while a monopolar thundercloud charge of 100 C can increase the electron density in the lower ionosphere by a factor of 1.6.
- The model results obtained in this study are not as pronounced as those of Salem et al. [9]. The reason for this is that the three-dimensional thundercloud electric field penetration model constructed in this study considers the spatial shunting of the conductive current, so the value of the conductive current penetrating into the D-layer of the ionosphere is smaller than that estimated by Salem et al. [9].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, N. Multiple ion species fluid modeling of sprite halos and the role of electron detachment of O− in their dynamics. J. Geophys. Res. Space Phys. 2012, 117, A03308. [Google Scholar] [CrossRef]
- Pasko, V.P.; Inan, U.S.; Bell, T.F. Ionospheric effects due to electrostatic thundercloud fields. J. Atmos. Sol.-Terr. Phys. 1998, 60, 863–870. [Google Scholar] [CrossRef]
- Park, C.; Helliwell, R.A. The formation by electric fields of field-aligned irregularities in the magnetosphere. Radio Sci. 1971, 6, 299–304. [Google Scholar] [CrossRef]
- Hegai, V.; Kim, V.; Illich-Svitych, P. The formation of a cavity in the night-time midlatitude ionospheric E-region above a thundercloud. Planet. Space Sci. 1990, 38, 703–707. [Google Scholar] [CrossRef]
- Vellinov, P.; Tonev, P. Penetration of multipole thundercloud electric fields into the ionosphere. J. Atmos. Terr. Phys. 1994, 56, 349–359. [Google Scholar] [CrossRef]
- Han, F.; Cummer, S.A. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J. Geophys. Res. Space Phys. 2010, 115, A09323. [Google Scholar] [CrossRef]
- Shao, X.-M.; Lay, E.H.; Jacobson, A.R. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nat. Geosci. 2013, 6, 29–33. [Google Scholar] [CrossRef]
- Lay, E.H.; Shao, X.M.; Jacobson, A.R. D region electron profiles observed with substantial spatial and temporal change near thunderstorms. J. Geophys. Res.: Space Phys. 2014, 119, 4916–4928. [Google Scholar] [CrossRef]
- Salem, M.A.; Liu, N.; Rassoul, H.K. Effects of small thundercloud electrostatic fields on the ionospheric density profile. Geophys. Res. Lett. 2015, 4, 1619–1625. [Google Scholar] [CrossRef]
- Salem, M.A.; Liu, N.; Rassoul, H.K. Modification of the lower ionospheric conductivity by thunderstorm electrostatic fields. Geophys. Res. Lett. 2016, 43, 5–12. [Google Scholar] [CrossRef]
- Velinov, P.I.; Tonev, P.T. Thundercloud electric field modeling for the ionosphere-Earth region: 1. Dependence on cloud charge distribution. J. Geophys. Res. Atmos. 1995, 100, 1477–1485. [Google Scholar] [CrossRef]
- Velinov, P.; Tonev, P. Modelling the penetration of thundercloud electric fields into the ionosphere. J. Atmos. Terr. Phys. 1995, 57, 687–694. [Google Scholar] [CrossRef]
- Park, C.; Dejnakarintra, M. Penetration of thundercloud electric fields into the ionosphere and magnetosphere: 1. Middle and subauroral latitudes. J. Geophys. Res. 1973, 78, 6623–6633. [Google Scholar] [CrossRef]
- Paul, S.; De, S.; Haldar, D.; Guha, G. Transmission of electric fields due to distributed cloud charges in the atmosphere-ionosphere system. Adv. Space Res. 2017, 60, 1891–1897. [Google Scholar] [CrossRef]
- McCormick, R.J.; Rodger, C.J.; Thomson, N.R. Reconsidering the effectiveness of quasi-static thunderstorm electric fields for whistler duct formation. J. Geophys. Res. Space Phys. 2002, 107, SIA 16-1–SIA 16-8. [Google Scholar] [CrossRef]
- Holzworth, R.; Kelley, M.; Siefring, C.; Hale, L.; Mitchell, J. Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm: 2. Direct current electric fields and conductivity. J. Geophys. Res. Space Phys. 1985, 9, 9824–9830. [Google Scholar] [CrossRef]
- Yu, T.; Wan, W.; Liu, L. A theoretical model for ionospheric electric fields at mid-and low-latitudes. Sci. China Ser. G Phys. Mech. Astron. 2003, 46, 23–32. [Google Scholar] [CrossRef]
- Richmond, A.; Matsushita, S.; Tarpley, J. On the production mechanism of electric currents and fields in the ionosphere. J. Geophys. Res. 1976, 81, 547–555. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather. 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Picone, J.; Hedin, A.; Drob, D.P.; Aikin, A. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, SIA 15-1–SIA 15-16. [Google Scholar] [CrossRef]
- Macmillan, S.; Quinn, J. The 2000 revision of the joint UK/US geomagnetic field models and an IGRF 2000 candidate model. Earth Planets Space 2000, 52, 1149–1162. [Google Scholar] [CrossRef] [Green Version]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics: Partial Differential Equations; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Glukhov, V.; Pasko, V.; Inan, U. Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts. J. Geophys. Res. Space Phys. 1992, 97, 16971–16979. [Google Scholar] [CrossRef]
- Hagelaar, G.; Pitchford, L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722. [Google Scholar] [CrossRef]
- Wait, J.R.; Spies, K.P. Characteristics of the Earth-Ionosphere Waveguide for VLF Radio Waves; US Department of Commerce, National Bureau of Standards: Gaithersburg, MD, USA, 1964; Volume 13. [Google Scholar]
- Bickel, J.; Ferguson, J.; Stanley, G. Experimental observation of magnetic field effects on VLF propagation at night. Radio Sci. 1970, 5, 19–25. [Google Scholar] [CrossRef]
- Cheng, Z.; Cummer, S.A. Broadband VLF measurements of lightning-induced ionospheric perturbations. Geophys. Res. Lett. 2005, 32, L08804. [Google Scholar] [CrossRef] [Green Version]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Rodger, C.J.; Thomson, N.R.; Dowden, R.L. Are whistler ducts created by thunderstorm electrostatic fields? J. Geophys. Res. Space Phys. 1998, 103, 2163–2169. [Google Scholar] [CrossRef]
- Rodger, C.; Thomson, N.; Dowden, R. Correction to “Are whistler ducts created by thunderstorm electrostatic fields?” by CJ Rodger et al. J. Geophys. Res. Space Phys. 2002, 107, SIA 1-1. [Google Scholar] [CrossRef]
- Ushio, T.; Heckman, S.; Boccippio, D.; Christian, H.; Kawasaki, Z.-I. A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res. 2001, 106, 24089–24096. [Google Scholar] [CrossRef]
- Hale, L.C. Middle atmosphere electrical structure, dynamics and coupling. Adv. Space Res. 1984, 4, 175–186. [Google Scholar] [CrossRef]
- Kabirzadeh, R.; Lehtinen, N.; Inan, U. Latitudinal dependence of static mesospheric E fields above thunderstorms. Geophys. Res. Lett. 2015, 42, 4208–4215. [Google Scholar] [CrossRef] [Green Version]
Layer Number | Altitude Range | Scale Heights | |
---|---|---|---|
Field-Aligned Conductivity | Pederson Conductivity | ||
0, 1 | 0–18 | 6 | 6 |
2 | 18–40 | 8 | 8 |
3 | 40–55 | 11 | 11 |
4 | 55–70 | 16.6 | 16.6 |
5 | 70–80 | 2.51 | 16.6 |
6 | 80–116 | 2.80 | 4.67 |
7 | 116–150 | 50 | −12 |
Reaction No. | Reactants | Products | Rate Constant | |
Ionization | ||||
R1 | ||||
Three-Body Electron Attachment (E/N = 0 Td) | ||||
R2 | ||||
Three-Body Electron Attachment (E/N > 0 Td) | ||||
R3 | ||||
Recombination (Electron-Ion) | ||||
R4 | ||||
R5 | ||||
Recombination (Ion-Ion) | ||||
R6 | ||||
R7 | ||||
R8 | ||||
R9 | ||||
R10 | ||||
R11 | ||||
R12 | ||||
R13 | ||||
Ion Conversion | ||||
R14 | ||||
R15 | ||||
R16 | ||||
R17 | ||||
R18 | ||||
Electron Detachment | ||||
R19 | ||||
R20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Liu, Y.; Lin, Y.; Zhou, C.; Zhao, Z. Simulation of Electron Density Disturbance in the Lower Ionosphere Caused by Thundercloud Electrostatic Fields. Atmosphere 2023, 14, 444. https://doi.org/10.3390/atmos14030444
Yang X, Liu Y, Lin Y, Zhou C, Zhao Z. Simulation of Electron Density Disturbance in the Lower Ionosphere Caused by Thundercloud Electrostatic Fields. Atmosphere. 2023; 14(3):444. https://doi.org/10.3390/atmos14030444
Chicago/Turabian StyleYang, Xubo, Yi Liu, Youzhi Lin, Chen Zhou, and Zhengyu Zhao. 2023. "Simulation of Electron Density Disturbance in the Lower Ionosphere Caused by Thundercloud Electrostatic Fields" Atmosphere 14, no. 3: 444. https://doi.org/10.3390/atmos14030444
APA StyleYang, X., Liu, Y., Lin, Y., Zhou, C., & Zhao, Z. (2023). Simulation of Electron Density Disturbance in the Lower Ionosphere Caused by Thundercloud Electrostatic Fields. Atmosphere, 14(3), 444. https://doi.org/10.3390/atmos14030444