Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices
Abstract
:1. Introduction
2. Data and Methods
2.1. Objective Circulation Classification: Jenkinson–Collison Type
2.2. SYNOP and ROAB Observations, FSI, SSI
2.3. GNSS IWV Data Set 2010–2019: SOFA and SOFI
2.4. Discriminant Analysis
3. Results
3.1. Circulation Classification: 2010–2019
3.2. Fog in Sofia 2010–2019: FSI, SSI and IWV
3.3. Probability of Detection and False Alarm for Fog in Sofia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steeneveld, G.J.; de Bode, M. Unravelling the relative roles of physical processes in modelling the life cycle of a warm radiation fog. Q. J. R. Meteorol. Soc. 2018, 144, 1539–1554. [Google Scholar] [CrossRef]
- Boutle, I.; Angevine, W.; Bao, J.W.; Bergot, T.; Bhattacharya, R.; Bott, A.; Ducongé, L.; Forbes, R.; Goecke, T.; Grell, E.; et al. Demistify: A large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog. Atmos. Chem. Phys. 2022, 22, 319–333. [Google Scholar] [CrossRef]
- Egli, S.; Thies, B.; Bendix, J. A spatially explicit and temporally highly resolved analysis of variations in fog occurrence over Europe. Q. J. R. Meteorol. Soc. 2019, 145, 1721–1740. [Google Scholar] [CrossRef]
- Boers, R.; Van Weele, M.; Van Meijgaard, E.; Savenije, M.; Siebesma, A.; Bosveld, F.; Stammes, P. Observations and projections of visibility and aerosol optical thickness (1956–2100) in the Netherlands: Impacts of time-varying aerosol composition and hygroscopicity. Environ. Res. Lett. 2015, 10, 015003. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Van Oldenborgh, G.J. Decline of fog, mist and haze in Europe over the past 30 years. Nat. Geosci. 2009, 2, 115–119. [Google Scholar] [CrossRef]
- Klemm, O.; Lin, N. What causes observed fog trends: Air quality or climate change? Aerosol Air Qual. Res. 2016, 16, 1131–1142. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Ivanov, O.; Peshev, Z.; Álvarez-Valenzuela, M.A.; Valiente-Blanco, I.; Evgenieva, T.; Dreischuh, T.; Gueorguiev, O.; Todorov, P.V.; Vaseashta, A. Fogs: Physical basis, characteristic properties, and impacts on the environment and human health. Water 2017, 9, 807. [Google Scholar] [CrossRef]
- Niu, F.; Li, Z.; Li, C.; Lee, K.H.; Wang, M. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Dutta, D.; Chaudhuri, S. Nowcasting visibility during wintertime fog over the airport of a metropolis of India: Decision tree algorithm and artificial neural network approach. Nat. Hazards 2015, 75, 1349–1368. [Google Scholar] [CrossRef]
- Hunová, I.; Brabec, M.; Malỳ, M.; Valeriánová, A. Revisiting fog as an important constituent of the atmosphere. Sci. Total Environ. 2018, 636, 1490–1499. [Google Scholar] [CrossRef]
- Izett, J.G.; van de Wiel, B.J.; Baas, P.; Bosveld, F.C. Understanding and reducing false alarms in observational fog prediction. Bound. Layer Meteorol. 2018, 169, 347–372. [Google Scholar] [CrossRef] [PubMed]
- Holtslag, M.C.; Steeneveld, G.J.; Holtslag, A.A. Fog forecasting: “Old fashioned” semi-empirical methods from radio sounding observations versus “modern” numerical models. In Proceedings of the 5th International Conference on Fog, Fog Collection and Dew (FOGDEW2010), Münster, Germany, 25–30 July 2010; pp. 25–30. [Google Scholar]
- Belo-Pereira, M.; Santos, J. A persistent wintertime fog episode at Lisbon airport (Portugal): Performance of ECMWF and AROME models. Meteorol. Appl. 2016, 23, 353–370. [Google Scholar] [CrossRef]
- Song, Y.; Yum, S.S. Development and verification of the fog stability index for Incheon international airport based on the measured fog characteristics. Atmosphere 2013, 23, 443–452. [Google Scholar] [CrossRef]
- Dejmal, K.; Novotny, J. Application of Fog Stability Index for significantly reduced visibility forecasting in the Czech Republic. In Recent Advances in Fluid Mechanics and Heat & Mass Transfer; Wseas: Athens, Greece; Sofia, Bulgaria; Houston, TX, USA, 2011; pp. 317–320. [Google Scholar]
- Lee, J.; Park, J.U.; Cho, J.; Baek, J.; Kim, H.W. A characteristic analysis of fog using GPS-derived integrated water vapour. Meteorol. Appl. 2010, 17, 463–473. [Google Scholar] [CrossRef]
- Stoycheva, A.; Guerova, G. Study of fog in Bulgaria by using the GNSS tropospheric products and large scale dynamic analysis. J. Atmos. Sol. Terr. Phys. 2015, 133, 87–97. [Google Scholar] [CrossRef]
- Stoycheva, A.; Manafov, I.; Vassileva, K.; Guerova, G. Study of persistent fog in Bulgaria with Sofia Stability Index, GNSS tropospheric products and WRF simulations. J. Atmos. Sol. Terr. Phys. 2017, 161, 160–169. [Google Scholar] [CrossRef]
- Alaoui, B.; Bari, D.; Bergot, T.; Ghabbar, Y. Analog Ensemble Forecasting System for Low-Visibility Conditions over the Main Airports of Morocco. Atmosphere 2022, 13, 1704. [Google Scholar] [CrossRef]
- Neykov, N.; Stoycheva, A.; Gospodinov, I.; Gueorguiev, O.; Neychev, P.; Slavov, K. Fog and Horizontal Visibility Forecasting with Stochastic Models. Available online: http://meteorology.meteo.bg/global-change/files/2022/BJMH_2022_V26_N1/BJMH_26_1_1.pdf (accessed on 26 January 2023).
- Kim, S.; Rickard, C.; Hernandez-Vazquez, J.; Fernandez, D. Early Night Fog Prediction Using Liquid Water Content Measurement in the Monterey Bay Area. Atmosphere 2022, 13, 1332. [Google Scholar] [CrossRef]
- Otero, N.; Sillmann, J.; Butler, T. Assessment of an extended version of the Jenkinson–Collison classification on CMIP5 models over Europe. Clim. Dyn. 2018, 50, 1559–1579. [Google Scholar] [CrossRef]
- Voormansik, T.; Müürsepp, T.; Post, P. Climatology of Convective Storms in Estonia from Radar Data and Severe Convective Environments. Remote. Sens. 2021, 13, 2178. [Google Scholar] [CrossRef]
- Stoev, K.; Post, P.; Guerova, G. Synoptic circulation patterns associated with foehn days in Sofia: 1979–2014. IdŐJÁRÁS Q. J. Hung. Meteorol. Serv. 2022, 126, 1–6. [Google Scholar] [CrossRef]
- Philipp, A.; Beck, C.; Huth, R.; Jacobeit, J. Development and comparison of circulation type classifications using the COST 733 dataset and software. Int. J. Climatol. 2016, 36, 2673–2691. [Google Scholar] [CrossRef]
- Post, P.; Truija, V.; Tuulik, J. Circulation weather types and their influence on temperature and precipitation in Estonia. Boreal Environ. Res. 2002, 7, 281–289. [Google Scholar]
- Jenkinson, A.; Collison, F. An initial climatology of gales over the North Sea. Synop. Climatol. Branch Memo. 1977, 62, 18. [Google Scholar]
- Lamb, H.H. British Isles Weather Types and a Register of the Daily Sequence of Circulation Patterns 1861–1971; Meteorological Office: London, UK, 1972.
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reymann, M.; Piasecki, J.; Hosein, F.; Larabee, S.; Williams, G. Meteorological Techniques; Technical Report, AIR WEATHER SERVICE SCOTT AFB IL; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Stoycheva, A.; Evtimov, S. Studying the fogs in Sofia with Cherni Vrah-Sofia Stability Index. Bulg. Geophys. J. 2014, 40, 23–32. [Google Scholar]
- Holton, J.R. An introduction to dynamic meteorology. Am. J. Phys. 1973, 41, 752–754. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99, 485. [Google Scholar] [CrossRef]
- Boehm, J.; Kouba, J.; Schuh, H. Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations. J. Geod. 2009, 83, 397–401. [Google Scholar] [CrossRef]
- Byun, S.H.; Bar-Sever, Y.E. A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 2009, 83, 1–7. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R.; Collilieux, X.; Garayt, B. IGS08: The IGS realization of ITRF2008. GPS Solut. 2012, 16, 483–494. [Google Scholar] [CrossRef]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Davis, J.; Herring, T.; Shapiro, I.; Rogers, A.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapour Using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Thayer, G.D. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Sissenwine, N.; Dubin, M.; Wexler, H. The U.S. Standard Atmosphere, 1962. J. Geophys. Res. 1962, 67, 3627–3630. [Google Scholar] [CrossRef]
- Huberty, C.J. Discriminant analysis. Rev. Educ. Res. 1975, 45, 543–598. [Google Scholar] [CrossRef]
- StatSoft Inc. STATISTICA (Data Analysis Software System), 6th ed.; StatSoft Inc.: Tulsa, OK, USA, 2001; p. 150. Available online: www.statsoft.com (accessed on 26 January 2023).
- WMO. Manual on Codes. 2019. Available online: https://library.wmo.int/doc_num.php?explnum_id=10235 (accessed on 27 December 2022).
- Hanssen, A.; Kuipers, W. On the Relationship between the Frequency of Rain and Various Meteorological Parameters. (With Reference to the Problem of Objective Forecasting); Koninklijk Nederlands Meteorologisch Instituut: Hague, The Netherlands, 1965.
JCT26 | FSI | SSI | SSI + Wind | SSI + Wind + RH | SSI + Wind+ RH + IWV | |
---|---|---|---|---|---|---|
POD | 60.1% | 77.4% | 73.7% | 74% | 77% | 77.9% |
FAR | 39.9% | 22.6% | 26.3% | 26% | 23% | 22.1% |
CSI | 9% | 23% | 9% | 10% | 12% | 14% |
TSS | 8% | 57% | 56% | 59% | 74% | 74% |
Parameters | Equation |
---|---|
SSI + Wind | 25.71 × SSI + 1.23 × Wind − 13.33 |
SSI + Wind + RH | 11.63 × SSI + 1.24 × Wind + 0.23 × RH − 17.63 |
SSI + Wind + RH + IWV | 18.04 × SSI + 1.45 × Wind + 0.2 × RH + 0.41 × IWV − 21.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penov, N.; Stoycheva, A.; Guerova, G. Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices. Atmosphere 2023, 14, 773. https://doi.org/10.3390/atmos14050773
Penov N, Stoycheva A, Guerova G. Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices. Atmosphere. 2023; 14(5):773. https://doi.org/10.3390/atmos14050773
Chicago/Turabian StylePenov, Nikolay, Anastasiya Stoycheva, and Guergana Guerova. 2023. "Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices" Atmosphere 14, no. 5: 773. https://doi.org/10.3390/atmos14050773
APA StylePenov, N., Stoycheva, A., & Guerova, G. (2023). Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices. Atmosphere, 14(5), 773. https://doi.org/10.3390/atmos14050773