A Study of Elemental Composition and Risk Assessment Due to Exposure to Indoor PM10 in Two Residences in Mexico City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis
2.2. Statistical Analysis
2.3. Health Risk Assessment
3. Results and Discussion
3.1. Gravimetric Mass
3.2. Elemental Concentrations
3.3. Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rivas, I.; Fussell, J.C.; Kelly, F.J.; Querol, X. Indoor Sources of Air Pollutants. In Indoor Air Pollution; Hester, R.E., Harrison, R.M., Eds.; The Royal Society of Chemistry: London, UK, 2019; pp. 1–34. [Google Scholar]
- Jaimes Torres, M.; Aguilera Portillo, M.; Cuerdo-Vilches, T.; Oteiza, I.; Navas-Martín, M.Á. Habitability, resilience, and satisfaction in Mexican homes to COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 6993. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.; Wong, K.K. Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmos. Environ. 2002, 36, 265–277. [Google Scholar] [CrossRef]
- Martuzevicius, D.; Grinshpun, S.A.; Lee, T.; Hu, S.; Biswas, P.; Reponen, T.; LeMasters, G. Traffic-related PM2.5 aerosol in residential houses located near major highways: Indoor versus outdoor concentrations. Atmos. Environ. 2008, 42, 6575–6585. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos. Environ. 2008, 42, 8852–8862. [Google Scholar] [CrossRef]
- Fuller, C.H.; Brugge, D.; Williams, P.L.; Mittleman, M.A.; Durant, J.L.; Spengler, J.D. Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors. Atmos. Environ. 2012, 57, 257–265. [Google Scholar] [CrossRef]
- Tang, C.H.; Garshick, E.; Grady, S.; Coull, B.; Schwartz, J.; Koutrakis, P. Development of a modeling approach to estimate indoor-to-outdoor sulfur ratios and predict indoor PM2.5 and black carbon concentrations for Eastern Massachusetts households. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 125–130. [Google Scholar]
- Siponen, T.; Tarja, Y.-T.; Tiittanen, P.; Taimisto, P.; Pekkanen, J.; Salonen, R.O.; Lanki, T. Wood stove use and other determinants of personal and indoor exposures to particulate air pollution and ozone among elderly persons in a Northern Suburb. Indoor Air 2019, 29, 413–422. [Google Scholar] [CrossRef]
- Madureira, J.; Slezakova, K.; Silva, A.I.; Lage, B.; Mendes, A.; Aguiar, L.; Pereira, M.C.; Teixeira, J.P.; Costa, C. Assessment of indoor air exposure at residential homes: Inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci. Total Environ. 2020, 717, 137293. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, C.; Magana-Arachchi, D.; Vithanage, M.; Vanka, K.S.; Palanisami, T.; Masakorala, K.; Wijesekara, H.; Yan, Y.; Bolan, N.; et al. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. Int. J. Environ. Res. Public Health 2021, 18, 11055. [Google Scholar] [CrossRef]
- Langer, S.; Ramalho, O.; Derbez, M.; Ribéron, J.; Kirchner, S.; Mandin, C. Indoor environmental quality in French dwellings and building characteristics. Atmos. Environ. 2016, 128, 82–91. [Google Scholar] [CrossRef]
- McCormack, M.C.; Breysse, P.N.; Hansel, N.N.; Matsui, E.C.; Tonorezos, E.S.; Curtin-Brosnan, J.; Diette, G.B. Common household activities are associated with elevated particulate matter concentrations in bedrooms of inner-city Baltimore pre-school children. Environ. Res. 2008, 106, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.E.; Shaughnessy, R.; Haverinen-Shaughnessy, U.; Kwan, T.A.; Peccia, J. The impact of ventilation rate on the fungal and bacterial ecology of home indoor air. Build. Environ. 2020, 177, 106800. [Google Scholar] [CrossRef]
- Massey, D.; Kulshrestha, A.; Masih, J.; Taneja, A.B.E.J. Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Build. Environ. 2012, 47, 223–231. [Google Scholar]
- Guo, H.; Morawska, L.; He, C.; Gilbert, D. Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom. Atmos. Environ. 2008, 42, 757–768. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Ścibor, M.; Bokwa, A.; Balcerzak, B. Impact of wind speed and apartment ventilation on indoor concentrations of PM10 and PM2.5 in Kraków, Poland. Air Qual. Atmos. Health 2020, 13, 553–562. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.S.; Lee, J.; Kim, D. The effect of ventilation on reducing the concentration of hazardous substances in the indoor air of a Korean living environment. Anal. Sci. Technol. 2020, 33, 49–57. [Google Scholar]
- Fan, X.J.; Yang, C.; Zhang, L.; Fan, Q.; Li, T.; Bai, X.; Norback, D. Asthma symptoms among Chinese children: The role of ventilation and PM10 exposure at school and home. Int. J. Tuberc. Lung Dis. 2017, 21, 1187–1193. [Google Scholar] [CrossRef]
- Rojas-Bracho, L.; Suh, H.H.; Koutrakis, P. Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. J. Expo. Sci. Environ. Epidemiol. 2000, 10, 294–306. [Google Scholar] [CrossRef]
- Rosas-Pérez, I.; Serrano, J.; Alfaro-Moreno, E.; Baumgardner, D.; García-Cuéllar, C.; Miranda, J.; Raga, G.B.; Castillejos, M.; Drucker, R.; Osornio-Vargas, A.R. Relations between PM10 composition and cell toxicity: A multivariate and graphical approach. Chemosphere 2007, 67, 1218–1228. [Google Scholar] [CrossRef]
- Rodríguez-Agudelo, Y.; Riojas-Rodríguez, H.; Ríos, C.; Rosas, I.; Pedraza, E.S.; Miranda, J.; Siebe, C.; Texcalac, J.L.; Santos-Burgoa, C. Motor alterations associated with exposure to manganese in the environment in Mexico. Sci. Total Environ. 2006, 368, 542–556. [Google Scholar] [CrossRef] [PubMed]
- Quintana, R.; Serrano, J.; Gómez, V.; De Foy, B.; Miranda, J.; García-Cuéllar, C.; Vega, E.; Vázquez-López, I.; Molina, L.T.; Manzano-León, N.; et al. The oxidative potential and biological effects induced by PM10 were obtained in Mexico City and at a receptor site during the MILAGRO Campaign. Environ. Pollut. 2011, 159, 3446–3454. [Google Scholar] [CrossRef] [PubMed]
- Báez, A.; Padilla, H.; García, R.; Torres, M.C.; Rosas, I.; Belmont, R. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Sci. Total Environ. 2003, 302, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Báez, A.P.; Padilla, H.G.; García, R.; Belmont, R.D.; Torres, M.C. Measurements of carbonyls in a 13-story building. Environ. Sci. Pollut. Res. 2004, 11, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Tovalin-Ahumada, H.; Whitehead, L.; Blanco, S. Personal exposure to PM2.5 and element composition—A comparison between outdoor and indoor workers from two Mexican cities. Atmos. Environ. 2007, 41, 7401–7413. [Google Scholar] [CrossRef]
- Zuk, M.; Rojas, L.; Blanco, S.; Serrano, P.; Cruz, J.; Ángeles, F.; Tzintzun, G.; Armendáriz, C.; Edwards, R.D.; Johnson, M.; et al. The impact of improved wood-burning stoves on fine particulate matter concentrations in rural Mexican homes. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Carabalí, G.; Castro, T.; De la Cruz, W.; Peralta, O.; Varela, A.; Amelines, O.; Rivera, M.; Ruiz-Suárez, G.; Torres-Jardón, R.; Martínez-Quiroz, E.; et al. Morphological and chemical characterization of soot emitted during flaming combustion stage of native-wood species used for the cooking process in western Mexico. J. Aerosol. Sci. 2016, 95, 1–14. [Google Scholar] [CrossRef]
- Reynoso-Cruces, S.; Hernández-López, A.E.; Miranda, J.; Mejía-Ponce, L.V. Elemental characterization and risk assessment of indoor aerosols in an electrostatic particle accelerator laboratory. Environ. Pollut. Bioavailab. 2021, 33, 334–346. [Google Scholar] [CrossRef]
- Mexican Official Standard NMX-R-060-SCFI-2013; Windows and Architectural Products for the External Closure of Facades-Classifications and Specifications. Ministry of Economy: Mexico City, Mexico, 2014.
- Molina, L.T.; de Foy, B.; Martínez, O.V.; Páramo Figueroa, V.H. Air quality, weather and climate in Mexico City. World Meteorol. Organ. (WMO) Bull 2009, 58, 48. [Google Scholar]
- Espinosa, A.A.; Reyes-Herrera, J.; Miranda, J.; Mercado, F.; Veytia, M.A.; Cuautle, M.; Cruz, J.I. Development of an X-ray fluorescence spectrometer for environmental science applications. Inst. Sci. Technol. 2012, 40, 603–617. [Google Scholar] [CrossRef]
- Mejía-Ponce, L.V.; Hernández-López, A.E.; Reynoso-Cruces, S.; Pineda, J.C.; Mendoza-Flores, J.A.; Miranda, J. Improvements to the X-ray Spectrometer at the Aerosol Laboratory, Instituto de Física, UNAM. J. Nucl. Phys. Mater. Sci. Radiat. Appl. 2018, 6, 57–60. [Google Scholar]
- IAEA. Quantitative X ray Analysis System; Computer Manual Series No. 21; International Atomic Energy Agency: Vienna, Austria, 2007; p. 138. [Google Scholar]
- Espinosa, A.A.; Miranda, J.; Pineda, J.C. Evaluation of uncertainty in correlated quantities: Application to elemental analysis of atmospheric aerosols. Rev. Mex. Física 2010, 56, 134–140. [Google Scholar]
- Mejía-Ponce, L.V.; Hernández-López, A.E.; Miranda-Martín-del-Campo, J.; Pineda-Santamaría, J.C.; Reynoso-Cruces, S.; Mendoza-Flores, J.A.; Espinosa-Guzmán, A.A. Elemental analysis of PM10 in southwest Mexico City and source apportionment using positive matrix factorization. J. Atmos. Chem. 2022, 79, 167–198. [Google Scholar] [CrossRef]
- Hernández-López, A.E.; Miranda-Martín-del-Campo, J.; Mugica-Álvarez, V.; Hernández-Valle, B.L.; Mejía-Ponce, L.V.; Pineda-Santamaría, J.C.; Reynoso-Cruces, S.; Mendoza-Flores, J.A.; Rozanes-Valenzuela, D. A Study of PM2.5 Elemental Composition in Southwest Mexico City and Development of Receptor Models with Positive Matrix Factorization. Rev. Int. Contam. Amb. 2021, 37, 67–88. [Google Scholar] [CrossRef]
- SEDEMA. Databases of the Automatic Atmospheric Monitoring Network. In Red Automática de Monitoreo Atmosférico, RAMA; Secretaría de Medio Ambiente: Mexico City, Mexico, 2021. [Google Scholar]
- EPA. Exposure Factors Handbook: Edition; EPA/600/R-09/052F; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. Available online: http://www.epa.gov/ncea/efh (accessed on 1 September 2020).
- Embiale, A.; Chandravanshi, B.S.; Zewge, F.; Sahle-Demessie, E. Health risk assessment of trace elements through the exposure of particulate matter-10 during the cooking of Ethiopian traditional dish sauces. Toxicol. Environ. Chem. 2020, 102, 151–169. [Google Scholar] [CrossRef]
- Taylor, J.R. An Introduction to Error Analysis, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997; p. 327. [Google Scholar]
- JCGM. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; Joint Committee for Guides in Metrology: Geneva, Switzerland, 2008; p. 134. [Google Scholar]
- Miranda, J.; Cahill, T.A.; Morales, J.R.; Aldape, F.; Flores, M.J.; Díaz, R.V. Determination of elemental concentrations in atmospheric aerosols in Mexico City using proton induced X-ray emission, proton elastic scattering, and laser absorption. Atmos. Environ. 1994, 28, 2299–2306. [Google Scholar] [CrossRef]
- Kang, K.; Kim, H.; Kim, D.D.; Lee, Y.G.; Kim, T. Characteristics of cooking-generated PM10 and PM2.5 in residential buildings with different cooking and ventilation types. Sci. Total Environ. 2019, 668, 56–66. [Google Scholar] [CrossRef]
- Park, S.; Song, D.; Park, S.; Choi, Y. Particulate matter generation in daily activities and removal effect by ventilation methods in residential building. Air Qual. Atmos. Health 2021, 14, 1665–1680. [Google Scholar] [CrossRef]
- Canha, N.; Lage, J.; Candeias, S.; Alves, C.; Almeida, S.M. Indoor air quality during sleep under different ventilation patterns. Atmos. Pollut. Res. 2017, 8, 1132–1142. [Google Scholar] [CrossRef]
- Reynoso-Cruces, S. A Study of the Atmospheric Aerosol Present in Indoor in Environments at the Mexico Valley Metropolitan Area. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2022. [Google Scholar]
- Barrera, V.A.; Miranda, J.; Espinosa, A.A.; Meinguer, J.; Martínez, J.N.; Cerón, E.; Morales, J.R.; Miranda, P.A.; Días, J.F. Contribution of soil, Sulfate, and Biomass burning sources to the elemental composition of PM10 from Mexico City. Int. J. Environ. Res. 2012, 6, 597–612. [Google Scholar]
- Wang, J.; Ogawa, S. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Satsangi, P.G.; Yadav, S.; Pipal, A.S.; Kumbhar, N. Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmos. Environ. 2014, 92, 384–393. [Google Scholar] [CrossRef]
- Srithawirat, T.; Latif, M.T.; Sulaiman, F.R. Indoor PM10 and its heavy metal composition at a roadside residential environment, Phitsanulok, Thailand. Atmósfera 2016, 29, 311–322. [Google Scholar] [CrossRef]
- Chen, C.; Yao, M.; Luo, X.; Zhu, Y.; Liu, Z.; Zhuo, H.; Zhao, B. Outdoor-to-indoor transport of ultrafine particles: Measurement and model development of infiltration factor. Environ. Pollut. 2020, 267, 115402. [Google Scholar] [CrossRef]
- Santiago, J.L.; Rivas, E.; Buccolieri, R.; Martilli, A.; Vivanco, M.G.; Borge, R.; Carlo, O.S.; Martín, F. Indoor-outdoor pollutant concentration modeling: Comprehensive urban air quality and exposure assessment. Air Qual. Atmos. Health 2022, 15, 1583–1608. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z. A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations. Atmos. Environ. 2003, 37, 4277–4285. [Google Scholar] [CrossRef]
- Pekey, B.; Bozkurt, Z.B.; Pekey, H.; Doğan, G.; Zararsiz, A.; Efe, N.; Tuncel, G. Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air 2010, 20, 112–125. [Google Scholar]
- Rohra, H.; Tiwari, R.; Khandelwal, N.; Taneja, A. Mass distribution and health risk assessment of size segregated particulate in varied indoor microenvironments of Agra, India-A case study. Urban Clim. 2018, 24, 139–152. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Zhang, S.P.; Ni, S.J.; Long, Z.J. Characteristics, Sources, and Health Risk Assessment of Trace Elements in PM10 at an Urban Site in Chengdu, Southwest China. Aerosol Air Qual. Res. 2018, 8, 357–370. [Google Scholar] [CrossRef]
- Dingle, J.H.; Kohl, L.; Khan, N.; Meng, M.; Shi, Y.A.; Pedroza-Brambila, M.; Chow, C.-W.; Chan, A.W. Sources and composition of metals in indoor house dust in a mid-size Canadian city. Environ. Pollut. 2021, 289, 117867. [Google Scholar] [CrossRef]
- Retama, A.; Ramos-Cerón, M.; Rivera-Hernández, O.; Allen, G.; Velasco, E. Aerosol optical properties and brown carbon in Mexico City. Environ. Sci. Atmos. 2022, 2, 315–334. [Google Scholar] [CrossRef]
Item | Iztapalapa | Tlalnepantla |
---|---|---|
Coordinates | 19°19′40.93″ N, 99°02′59.48″ W | 19°31′59.50″ N, 99°12′51.08″ W |
Building materials | Brick, gypsum covered, painted | Brick, gypsum covered, painted |
Number of levels | 2 | 1 |
Floor covering | Ceramics | Ceramics |
Constructed area | 108 m2 | 132 m2 |
Area of the studied room | 29 m2 | |
Number of inhabitants | 5 | 4 |
Cooking | Gas | Gas |
Smoking | No | No |
Ventilation | Natural, windows and doors open at least 12 h daily | Natural, windows and doors open at least 12 h daily |
Distance to major avenues | 300 m | 450 m |
Element | Iztapalapa | Tlalnepantla | ||||||
---|---|---|---|---|---|---|---|---|
Indoors | n | Outdoors | n | Indoors | n | Outdoors | n | |
Mass a | 41.9 (6.9) b | 48 | 26.9 (6.9) c | 48 | 38.5 (7.1) | 50 | 27.6 (7.1) | 50 |
Al | 311 (44) | 44 | 447 (56) | 46 | 146 (30) | 33 | 272 (42) | 49 |
Si | 1170 (80) | 48 | 1510 (10) | 48 | 402 (34) | 50 | 967 (68) | 50 |
P | 43.2 (5.0) | 48 | 40.1 (4.7) | 48 | 84.8 (7.8) | 50 | 71.9 (6.9) | 50 |
S | 786 (48) | 48 | 833 (50) | 48 | 423 (27) | 50 | 425 (27) | 50 |
Cl | 640 (39) | 48 | 551 (34) | 48 | 440 (28) | 50 | 404 (26) | 50 |
K | 234 (19) | 48 | 278 (22) | 48 | 183 (16) | 50 | 222 (18) | 50 |
Ca | 1470 (91) | 48 | 1280 (80) | 48 | 324 (25) | 50 | 883 (57) | 50 |
Ti | 63.0 (7.2) | 47 | 66.8 (7.3) | 47 | 31.3 (4.5) | 38 | 45.1 (5.9) | 49 |
V | 9.8 (2.1) | 17 | 13.0 (2.5) | 19 | 9.1 (2.1) | 19 | 9.1 (1.9) | 20 |
Cr | 23.1 (3.2) | 48 | 28.0 (3.6) | 47 | 26.1 (3.5) | 50 | 25.8 (3.4) | 50 |
Mn | 21.0 (2.9) | 44 | 26.1 (3.3) | 47 | 19.1 (2.7) | 45 | 24.4 (3.2) | 47 |
Fe | 372 (24) | 48 | 518 (32) | 48 | 175 (13) | 50 | 422 (27) | 50 |
Ni | 14.0 (2.1) | 38 | 15.6 (2.3) | 41 | 14.4 (2.1) | 44 | 15.9 (2.3) | 43 |
Cu | 53.4 (4.9) | 48 | 31.5 (3.6) | 48 | 24.5 (3.1) | 47 | 21.5 (2.7) | 48 |
Zn | 69.2 (5.9) | 47 | 70.1 (6.0) | 48 | 67.1 (5.7) | 49 | 101 (7.9) | 50 |
Se | 32.8 (3.7) | 28 | 22.8 (3.2) | 30 | 63.3 (5.9) | 23 | 71.0 (6.5) | 31 |
Br | 17.9 (2.7) | 27 | 23.1 (3.1) | 25 | 71.6 (6.6) | 25 | 70.1 (6.5) | 32 |
Pb | 75.5 (9.2) | 38 | 78.6 (9.1) | 45 | 19.1 (1.6) | 16 | 27.1 (2.0) | 15 |
Site | Mass (µg m−3) | Fe | Ni | Cu | Zn | Pb |
---|---|---|---|---|---|---|
Iztapalapa, Mexico a | 41.9 (16.1) | 0.37 | 0.014 | 0.053 | 0.069 | 0.076 |
Tlalnepantla, Mexico a | 38.5 (26.3) | 0.18 | 0.014 | 0.024 | 0.067 | 0.19 |
Phitsanulok, Thailand b | 88.3 (11.7) | 2.7 | 0.3 | 1.1 | 1.3 | 1.7 |
Pune, India c | 138.2 (68.2) | 8 | 0.3 | 0.8 | 0.03 | - |
Kocaeli, Turkey d | 56.9 (24.3) | 0.213 | 0.004 | 0.088 | 0.161 | 0.125 |
Agra, India e | 263 (127) | 18 | 0.155 | 2.46 | 2.98 | 0.89 |
Hong Kong, China f | 63.3 | 0.408 | 0.002 | 0.019 | 0.171 | 0.105 |
Element | RfD | IUR | SF | G | ||
---|---|---|---|---|---|---|
mg kg−1 d−1 | ||||||
Inhalation | Ingestion | Absorption | ||||
Fe | NA a | 0.7 c | 1 c | NA | NA | NA |
Ni | 0.00005 c | 0.02 b | 0.04 c | 0.0024 | 0.000084 | 0.04 |
Cu | 0.04 c | 0.4 c | 1 c | NA | NA | NA |
Zn | 0.91 b | 0.3 b | 1 c | NA | NA | NA |
Mn | 0.00005 b | 0.14 b | 1 c | NA | NA | NA |
Pb | 0.0035 c | 0.1 c | 1 c | 0.00008 | 0.28 | 1 |
Cr | 0.000008 b | 0.003 b | 0.025 b | 0.012 | 0.5 | 0.025 |
Element | HQ inh | HQ ing | HQ der | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Children | Men | Women | Children | Men | Women | Children | ||
Fe | Izt | − | − | − | 2.97 × 10−1 | 3.47 × 10−1 | 2.77 × 100 | 1.02 × 10−3 | 1.19 × 10−3 | 1.36 × 10−3 |
Tla | − | − | − | 1.40 × 10−1 | 1.63 × 10−1 | 1.30 × 100 | 4.79 × 10−4 | 5.59 × 10−4 | 6.39 × 10−4 | |
Ni | Izt | 1.67 × 10−4 | 1.44 × 10−4 | 3.89 × 10−4 | 3.91 × 10−1 | 4.57 × 10−1 | 3.65 × 100 | 9.59 × 10−4 | 1.12 × 10−3 | 1.28 × 10−3 |
Tla | 1.71 × 10−4 | 6.89 × 10−7 | 4.00 × 10−4 | 4.03 × 10−1 | 4.70 × 10−1 | 3.76 × 100 | 3.95 × 10−5 | 4.60 × 10−5 | 5.26 × 10−5 | |
Cu | Izt | 7.94 × 10−7 | 6.89 × 10−7 | 1.85 × 10−6 | 7.46 × 10−1 | 8.71 × 10−1 | 6.97 × 100 | 1.46 × 10−4 | 1.71 × 10−4 | 1.95 × 10−4 |
Tla | 3.67 × 10−7 | 3.92 × 10−8 | 8.50 × 10−7 | 3.42 × 10−1 | 4.00 × 10−1 | 3.20 × 100 | 1.68 × 10−3 | 1.96 × 10−3 | 2.24 × 10−3 | |
Zn | Izt | 4.52 × 10−8 | 3.92 × 10−8 | 1.06 × 10−7 | 1.29 × 10−1 | 1.51 × 10−1 | 1.20 × 100 | 1.90 × 10−4 | 2.21 × 10−4 | 2.53 × 10−4 |
Tla | 4.39 × 10−8 | 2.17 × 10−4 | 1.02 × 10−7 | 1.25 × 10−1 | 1.46 × 10−1 | 1.17 × 100 | 1.84 × 10−4 | 2.14 × 10−4 | 2.45 × 10−4 | |
Mn | Izt | 2.50 × 10−4 | 2.17 × 10−4 | 5.83 × 10−4 | 8.39 × 10−2 | 9.79 × 10−2 | 7.83 × 10−1 | 5.75 × 10−5 | 6.71 × 10−5 | 7.67 × 10−5 |
Tla | 2.27 × 10−4 | 1.11 × 10−5 | 5.30 × 10−4 | 7.63 × 10−2 | 8.90 × 10−2 | 7.12 × 10−1 | 5.23 × 10−5 | 6.11 × 10−5 | 6.98× 10−5 | |
Pb | Izt | 1.28 × 10−5 | 1.11 × 10−5 | 2.99 × 10−5 | 4.22 × 10−1 | 4.93 × 10−1 | 3.94 × 100 | 2.07 × 10−4 | 2.41 × 10−4 | 2.76 × 10−4 |
Tla | 3.25 × 10−5 | 1.49 × 10−3 | 7.58 × 10−5 | 1.07 × 100 | 1.25 × 100 | 9.97 × 100 | 5.23 × 10−4 | 6.11 × 10−4 | 6.98 × 10−4 | |
Cr | Izt | 1.72 × 10−3 | 1.49 × 10−3 | 4.01 × 10−3 | 4.30 × 100 | 5.02 × 100 | 4.02 × 10+1 | 2.53 × 10−4 | 2.95 × 10−4 | 3.38 × 10−4 |
Tla | 1.94 × 10−3 | 1.68 × 10−3 | 4.53 × 10−3 | 4.87 × 100 | 5.68 × 100 | 4.54 × 10+1 | 7.15 × 10−5 | 8.34 × 10−5 | 9.53 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynoso-Cruces, S.; Miranda-Martín-del-Campo, J.; Pineda-Santamaría, J.C. A Study of Elemental Composition and Risk Assessment Due to Exposure to Indoor PM10 in Two Residences in Mexico City. Atmosphere 2023, 14, 734. https://doi.org/10.3390/atmos14040734
Reynoso-Cruces S, Miranda-Martín-del-Campo J, Pineda-Santamaría JC. A Study of Elemental Composition and Risk Assessment Due to Exposure to Indoor PM10 in Two Residences in Mexico City. Atmosphere. 2023; 14(4):734. https://doi.org/10.3390/atmos14040734
Chicago/Turabian StyleReynoso-Cruces, Salvador, Javier Miranda-Martín-del-Campo, and Juan Carlos Pineda-Santamaría. 2023. "A Study of Elemental Composition and Risk Assessment Due to Exposure to Indoor PM10 in Two Residences in Mexico City" Atmosphere 14, no. 4: 734. https://doi.org/10.3390/atmos14040734
APA StyleReynoso-Cruces, S., Miranda-Martín-del-Campo, J., & Pineda-Santamaría, J. C. (2023). A Study of Elemental Composition and Risk Assessment Due to Exposure to Indoor PM10 in Two Residences in Mexico City. Atmosphere, 14(4), 734. https://doi.org/10.3390/atmos14040734