Spatiotemporal Patterns and Characteristics of PM2.5 Pollution in the Yellow River Golden Triangle Demonstration Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. PM2.5 Pollution Levels
2.4. Data Processing Methods
2.4.1. Trend Analysis
2.4.2. Statistics of PM2.5 Pollution Process
3. Results
3.1. Temporal Variation Characteristics of PM2.5 Concentrations in YRGTDA
3.1.1. Annual Variation Characteristics
3.1.2. Seasonal Variation Characteristics
3.1.3. Monthly Variation Characteristics
3.2. Spatial Variation Characteristics of PM2.5 Concentrations in YRGTDA
3.3. Analysis of PM2.5 Pollution Processes in YRGTDA
3.3.1. Annual Variation of PM2.5 Pollution Classes
3.3.2. Monthly and Seasonal Variation Characteristics of PM2.5 Pollution Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Qaness, M.A.A.; Fan, H.; Ewees, A.A.; Yousri, D.; Elaziz, M.A. Improved ANFIS model for forecasting Wuhan City Air Quality and analysis COVID-19 lockdown impacts on air quality. Environ. Res. 2021, 194, 110607. [Google Scholar] [CrossRef] [PubMed]
- Meij, A.D.; Thunis, P.; Bessagnet, B.; Cuvelier, C. The sensitivity of the CHIMERE model to emissions reduction scenarios on air quality in Northern Italy. Atmos. Environ. 2009, 43, 1897–1907. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Chen, D.L.; Xie, X.M.; Xie, X.M.; Cai, J.; Zhuang, Y.; Cheng, N.L.; He, B.; Gao, B.B. Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in China based on spatio-temporal clustering. J. Clean. Prod. 2019, 207, 875–881. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, S.W.; Huang, J.F.; Li, X.L.; Wang, W.; Zhang, T.; Yin, F.; Ma, Y. Estimating high-resolution PM2.5 concentration in the Sichuan Basin using a random forest model with data-driven spatial autocorrelation terms. J. Clean. Prod. 2022, 380, 134890. [Google Scholar] [CrossRef]
- Dai, M.; Liu, A.; Sheng, Y.; Xian, Y.; Wang, H.; Wang, C. Analysis of PM2.5 Characteristics in Yancheng from 2017 to 2021 Based on Kolmogorov–Zurbenko Filter and PSCF Model. Atmosphere 2023, 14, 317. [Google Scholar] [CrossRef]
- Guo, S.; Tao, X.; Liang, L. Exploring Natural and Anthropogenic Drivers of PM2.5 Concentrations Based on Random Forest Model: Beijing–Tianjin–Hebei Urban Agglomeration, China. Atmosphere 2023, 14, 381. [Google Scholar] [CrossRef]
- Jiang, T.T.; Chen, B.; Nie, Z.; Ren, Z.H.; Xu, B.; Tang, S.H. Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model. Atmos. Res. 2021, 248, 105146. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.; Zhang, T.; Kong, H. Simulations of Summertime Ozone and PM2.5 Pollution in Fenwei Plain (FWP) Using the WRF-Chem Model. Atmosphere 2023, 14, 292. [Google Scholar] [CrossRef]
- Kelly, J.T.; Jang, C.; Timin, B.; Di, Q.; Scwartz, J.; Liu, Y.; Donkelaar, A.V.; Martin, R.V.; Berrocal, V.; Bell, M.L. Examining PM2.5 concentrations and exposure using multiple models. Environ. Res. 2021, 196, 110432. [Google Scholar] [CrossRef]
- Zhang, T.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Xu, X. Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada. Atmosphere 2023, 14, 374. [Google Scholar] [CrossRef]
- Chen, J.D.; Wang, B.; Huang, S.; Song, M.L. The influence of increased population density in China on air pollution. Sci. Total Environ. 2020, 735, 139456. [Google Scholar] [CrossRef] [PubMed]
- Yitshak-Sade, M.; Bobb, J.F.; Schwartz, J.D.; Kloog, I.; Zanobetti, A. The association between short and long-term exposure to PM2.5 and temperature and hospital admissions in New England and the synergistic effect of the short-term exposures. Sci. Total Environ. 2018, 639, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xie, M.; Liu, B.J.; Liu, X.R.; Feng, J.L.; Yang, F.Y.; Zhao, X.L.; You, T.; Wu, Z.; Gao, Y.H. Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci. Total Environ. 2022, 842, 156575. [Google Scholar] [CrossRef] [PubMed]
- Yahya, K.; Zhang, Y.; Vukovich, J.M. Real-time air quality forecasting over the southeastern United States using WRF/Chem-MADRID: Multiple-year assessment and sensitivity studies. Atmos. Environ. 2014, 92, 318–338. [Google Scholar] [CrossRef]
- Du, J.B.; Qiao, F.X.; Yu, L. Temporal characteristics and forecasting of PM2.5 concentration based on historical data in Houston, USA, Resources. Conserv. Recycl. 2019, 147, 145–156. [Google Scholar] [CrossRef]
- Montes, C.; Sapkota, T.; Singh, B. Seasonal patterns in rice and wheat residue burning and surface PM2.5 concentration in northern India. Atmos. Environ. 2022, 13, 100154. [Google Scholar] [CrossRef]
- Zhao, S.P.; Yu, Y.; Qin, D.H.; Yin, D.Y.; Dong, L.X.; He, J.J. Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China. Atmos. Pollut. Res. 2019, 10, 374–385. [Google Scholar] [CrossRef]
- Gonçalves, K.D.S.; Winkler, M.S.; Benchimol-Barbosa, P.R.; Hoogh, K.D.; Artaxo, P.E.; Hacon, S.D.S.; Schindler, C.; Künzli, N. Development of non-linear models predicting daily fine particle concentrations using aerosol optical depth retrievals and ground-based measurements at a municipality in the Brazilian Amazon region. Atmos. Environ. 2018, 184, 156–165. [Google Scholar] [CrossRef]
- Guzmán, P.; Tarín-Carrasco, P.; Morales-Suárez-Varela, M.; Jiménez-Guerrero, P. Effects of air pollution on dementia over Europe for present and future climate change scenarios. Environ. Res. 2022, 204, 112012. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, T.H.; Gu, X.F.; Wang, Y.; Chen, H.; Bao, F.W.; Shi, S.Y.; Xu, B.R.; Wang, W.N.; Zuo, X.; et al. Assessment of PM2.5 concentrations and exposure throughout China using ground observations. Sci. Total Environ. 2017, 601, 1024–1030. [Google Scholar] [CrossRef]
- Jurado, X.; Reiminger, N.; Maurer, L.; Vazquez, J.; Wemmert, C. On the Correlations between Particulate Matter: Comparison between Annual/Monthly Concentrations and PM10/PM2.5. Atmosphere 2023, 14, 385. [Google Scholar] [CrossRef]
- Xu, R.; Wang, D.; Li, J.; Wan, H.; Shen, S.; Guo, X. A Hybrid Deep Learning Model for Air Quality Prediction Based on the Time–Frequency Domain Relationship. Atmosphere 2023, 14, 405. [Google Scholar] [CrossRef]
- Zhai, S.W.; Zhang, Y.; Huang, J.F.; Li, X.L.; Wang, W.; Zhang, T.; Yin, F.; Ma, Y. Exploring the detailed spatiotemporal characteristics of PM2.5: Generating a full-coverage and hourly PM2.5 dataset in the Sichuan Basin, China. Chemosphere 2023, 310, 136786. [Google Scholar] [CrossRef]
- Liu, C.Q.; Li, Y.; Yuan, Z.B.; Lau, A.K.H.; Li, C.C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar]
- Xiao, Q.Y.; Wang, Y.J.; Chang, H.H.; Meng, X.; Geng, G.N.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Bi, J.Z.; Belle, J.H.; Wang, Y.J.; Lyapustin, A.I.; Wildani, A.; Liu, Y. Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sens. Environ. 2019, 221, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Hoogh, K.D.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [Google Scholar] [CrossRef]
- James, T.K.; Shannon, N.K.; Kirk, R.B.; Amara, L.H.; Havala, O.T.P.; Benjamin, N.M.; Jesse, O.B.; Barron, H.H.; Norman, C.P.; Heather, S.; et al. Assessing PM2.5 model performance for the conterminous U.S. with comparison to model performance statistics from 2007–2015. Atmos. Environ. 2019, 214, 116872. [Google Scholar]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Malik, S.; Pal, S.C.; Sattar, A.; Singh, S.K.; Mohammad, P. Trend of extreme rainfall events using suitable global circulation model to combat the water logging condition in kolkata metropolitan area. Urban Clim. 2020, 32, 100599. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, Z. Spatiotemporal characteristics of urban air quality in China and geographic detection of their determinants. J. Geogr. Sci. 2018, 28, 563–578. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Venugopal, M.; Khreis, H.; Birt, A.; Zietsman, J. Near-Road Traffic-Related Air Pollution: Resuspended PM2.5 from Highways and Arterials. Int. J. Environ. Res. Public Health 2020, 17, 2851. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wang, L.; Li, Z.; Wang, J. Spatial Characteristics and Regional Transmission Analysis of PM2.5 Pollution in Northeast China, 2016–2020. Int. J. Environ. Res. Public Health 2021, 18, 12483. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Z.Z.; Zhang, F.M.; Lu, Y.Y.; Duan, C.F.; Xu, Y. Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China. Agric. Water Manag. 2023, 275, 107992. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Y.; Wang, R.; Liu, B.; Qian, Z.; Li, C. Assessment of climatic impact on vegetation spring phenology in northern China. Atmosphere 2023, 14, 117. [Google Scholar] [CrossRef]
- Pisoni, E.; Dominguez-Torreiro, M.; Thunis, P. Inequality in exposure to air pollutants: A new perspective. Environ. Res. 2022, 212, 113358. [Google Scholar] [CrossRef]
Month | Linfen | Yuncheng | Weinan | Sanmenxia | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mini | Max | Mean | Min | Max | Mean | Mini | Max | Mean | Mini | Maxi | Mean | |
1 | 66 | 174 | 129 | 67 | 144 | 118 | 69 | 158 | 117 | 65 | 132 | 106 |
2 | 54 | 114 | 83 | 63 | 107 | 82 | 53 | 120 | 83 | 59 | 103 | 74 |
3 | 37 | 74 | 56 | 46 | 71 | 58 | 45 | 90 | 60 | 42 | 90 | 62 |
4 | 36 | 59 | 47 | 33 | 48 | 41 | 30 | 58 | 43 | 22 | 59 | 43 |
5 | 24 | 54 | 40 | 28 | 64 | 36 | 25 | 49 | 35 | 23 | 58 | 35 |
6 | 30 | 58 | 40 | 28 | 65 | 38 | 23 | 43 | 31 | 25 | 54 | 35 |
7 | 28 | 54 | 36 | 22 | 68 | 36 | 18 | 39 | 29 | 18 | 60 | 36 |
8 | 26 | 57 | 36 | 26 | 56 | 36 | 21 | 48 | 30 | 22 | 54 | 36 |
9 | 31 | 57 | 39 | 21 | 44 | 35 | 16 | 71 | 39 | 20 | 54 | 34 |
10 | 30 | 57 | 47 | 39 | 52 | 45 | 37 | 64 | 49 | 35 | 60 | 44 |
11 | 57 | 173 | 85 | 57 | 111 | 76 | 53 | 128 | 79 | 49 | 88 | 66 |
12 | 63 | 206 | 103 | 77 | 148 | 110 | 68 | 160 | 104 | 61 | 142 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, N.; He, L.; Jia, H.; Qin, M.; Zhang, D.; Wang, C.; Li, X.; Li, Y. Spatiotemporal Patterns and Characteristics of PM2.5 Pollution in the Yellow River Golden Triangle Demonstration Area. Atmosphere 2023, 14, 733. https://doi.org/10.3390/atmos14040733
Jin N, He L, Jia H, Qin M, Zhang D, Wang C, Li X, Li Y. Spatiotemporal Patterns and Characteristics of PM2.5 Pollution in the Yellow River Golden Triangle Demonstration Area. Atmosphere. 2023; 14(4):733. https://doi.org/10.3390/atmos14040733
Chicago/Turabian StyleJin, Ning, Liang He, Haixia Jia, Mingxing Qin, Dongyan Zhang, Cheng Wang, Xiaojian Li, and Yanlin Li. 2023. "Spatiotemporal Patterns and Characteristics of PM2.5 Pollution in the Yellow River Golden Triangle Demonstration Area" Atmosphere 14, no. 4: 733. https://doi.org/10.3390/atmos14040733
APA StyleJin, N., He, L., Jia, H., Qin, M., Zhang, D., Wang, C., Li, X., & Li, Y. (2023). Spatiotemporal Patterns and Characteristics of PM2.5 Pollution in the Yellow River Golden Triangle Demonstration Area. Atmosphere, 14(4), 733. https://doi.org/10.3390/atmos14040733