Study on the Hemispheric Asymmetry of Thermospheric Density Based on In-Situ Measurements from APOD Satellite
Abstract
:1. Introduction
2. Satellite Description
3. Results
3.1. Analysis of the 8 September 2017 Geomagnetic Event
3.1.1. Geomagnetic Conditions during the Storm on 8 September 2017
3.1.2. Mass Density Behavior from 7 to 10 September 2017
3.1.3. Explanation of Density Response Asymmetry
3.2. Mid- and Long-Term Observations of North-South Asymmetry
4. Conclusions
- For the magnetic storm event on 8 September 2017, the duskside SPR atmospheric density enhancement ratio is about 1.33–1.65 times that of NPR, showing a strong hemisphere density response asymmetry during the magnetic storm period. In the dawnside, this north–south response difference is smaller and also shows a dependence on LT differences. Energy injection in high-latitude regions leads to local atmospheric density enhancement and forms traveling atmospheric disturbance (TADs). These TADs can propagate to mid-low latitude regions and affect the global distribution of thermospheric atmospheric density, with a propagation time in the order of hours. The relationship between the Dst and Ap indices and the hemisphere density enhancement ratio was quantitatively analyzed, and the fitting slope of the SPR relative density difference is higher than that of the NPR. This response asymmetry can be explained by SuperDARN plasma convection velocity. The plasma convection velocity of the SPR is significantly greater than that of the NPR, which indicates stronger joule heating caused by ion-neutral friction in the Southern Hemisphere.
- Analysis of the long-term variation in atmospheric density asymmetry in the thermosphere high-latitude region of both hemispheres showed that it is influenced by solar activity, season, and different levels of geomagnetic disturbances. The thermospheric global (GR) atmospheric density decreases overall with decreasing sunspot numbers. The difference in atmospheric density between NPR and SPR has a clear annual periodicity. The distribution of NPR and SPR atmospheric density shows different seasonal characteristics. The NPR density peak is mainly in March or April. In particular, the “double-peak” phenomenon occurred in 2017, with peaks in March and September, respectively, while the largest feature of SPR atmospheric density is that its minimum value occurs in the summer months of June and July.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hedin, A.E.; Mayr, H.G. Solar EUV induced variations in the thermosphere. J. Geophys. Res. 1987, 92, 869–875. [Google Scholar] [CrossRef]
- Correira, J.; Evans, J.S.; Lumpe, J.D.; Krywonos, A.; Daniell, R.; Veibell, V.; McClintock, W.E.; Eastes, R.W. Thermospheric composition and solar EUV flux from the Global-scale Observations of the Limb and Disk (GOLD) mission. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029517. [Google Scholar] [CrossRef]
- Qian, L.; Solomon, S.C.; Kane, T.J. Seasonal variation of thermospheric density and composition. J. Geophys. Res. 2009, 114, A01312. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, C.; Chen, T.; Wang, Y.L.; Tan, A.; TS Wu Germany, G.A.; Wang, W. Global patterns of Joule heating in the high-latitude ionosphere. J. Geophys. Res. 2005, 110, A12208. [Google Scholar] [CrossRef] [Green Version]
- McHarg, M.; Chun, F.; Knipp, D.; Lu, G.; Emery, B.; Ridley, A. High-latitude Joule heating response to IMF inputs. J. Geophys. Res. 2005, 110, A08309. [Google Scholar] [CrossRef] [Green Version]
- Sutton, E.K.; Forbes, J.M.; Nerem, R.S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res. 2005, 110, A09S40. [Google Scholar] [CrossRef]
- Pham, K.H.; Zhang, B.; Sorathia, K.; Dang, T.; Wang, W.; Merkin, V.; Liu, H.; Lin, D.; Wiltberger, M.; Lei, J.; et al. Thermospheric density perturbations produced by traveling atmospheric disturbances during August 2005 storm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030071. [Google Scholar] [CrossRef]
- Liu, H.; Lühr, H.; Henize, V.; Köhler, W. Global distribution of the thermospheric total mass density derived from CHAMP. J. Geophys. Res. 2005, 110, A04301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Lotko, W.; Brambles, O.; Wiltberger, M.; Wang, W.; Schmitt, P.; Lyon, J. Enhancement of thermospheric mass density by soft electron precipitation. Geophys. Res. Lett. 2012, 39, L20102. [Google Scholar] [CrossRef] [Green Version]
- Lühr, H.; Rother, M.; Köhler, W.; Ritter, P.; Grunwaldt, L. Thermospheric up-welling in the cusp region: Evidence from CHAMP observations. Geophys. Res. Lett. 2004, 31, L06805. [Google Scholar] [CrossRef]
- Neubert, T.; Christiansen, F. Small-scale, field-aligned currents at the top-side ionosphere. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Cai, X.; Wang, W.; Lin, D.; Eastes, R.W.; Qian, L.; Zhu, Q.; Correira, J.; McClintock, W.E.; Gan, Q.; Aryal, S.; et al. Investigation of the Southern Hemisphere Mid-High Latitude Thermospheric ∑O/N2 responses to the Space-X storm. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031002. [Google Scholar] [CrossRef]
- Yu, T.; Wang, W.; Ren, Z.; Yue, J.; Yue, X.; He, M. Middle-low latitude neutral composition and temperature responses to the 20 and 21 November 2003 superstorm from GUVI dayside limb measurements. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028427. [Google Scholar] [CrossRef]
- Bruinsma, S.; Forbes, J.M.; Nerem, R.S.; Zhang, X. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res. 2006, 111, A06303. [Google Scholar] [CrossRef]
- Li, Y.P.; Sun, Y.Q.; Zhang, X.G.; Du, Q.; Tang, X.; Zheng, X.; Ai, J.; Meng, X.; Li, J.; Zhu, G.; et al. The preliminary result of orbital atmosphere detector on board spherical satellite. Sci. Sin. Tech. 2022, 52. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Meng, X.; Du, D.; Zhang, A.; Tang, X.; Yan, F.; Sun, Y.; Zhang, X.; Wang, B.; et al. Atmospheric Density Response to a Severe Magnetic Storm Detected by the 520 km Altitude Spherical Satellite. Atmosphere 2022, 13, 1891. [Google Scholar] [CrossRef]
- Li, R.; Lei, J. Responses of thermospheric mass densities to the October 2016 and September 2017 geomagnetic storms revealed from multiple satellite observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028534. [Google Scholar] [CrossRef]
- Wolf, R.A. Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. J. Geophys. Res. 1970, 75, 4677–4698. [Google Scholar] [CrossRef]
- Senior, C.; Blanc, M. On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J. Geophys. Res. Space Phys. 1984, 89, 261–284. [Google Scholar] [CrossRef]
- Koustov, A.V.; Lavoie, D.B.; Kouznetsov, A.F.; Burchill, J.K.; Knudsen, D.J.; Fiori, R.A.D. A comparison of cross-track ion drift measured by the Swarm satellites and plasma convection velocity measured by SuperDARN. J. Geophys. Res. Space Phys. 2019, 124, 4710–4724. [Google Scholar] [CrossRef]
- Liou, K.; Mitchell, E.J. Hemispheric asymmetry of the dayside aurora due to imbalanced solar insolation. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Laundal, K.M.; Cnossen, I.; Milan, S.E.; Haaland, S.E.; Coxon, J.; Pedatella, N.M.; Förster, M.; Reistad, J.P. North–south asymmetries in Earth’s magnetic field: Effects on high-latitude geospace. Space Sci. Rev. 2017, 206, 225–257. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, J.; Tang, G.; Chen, G.; Man, H.; Liu, S.; Li, Y. Processing and calibrating of in-situ atmospheric densities for APOD. Chin. J. Geophys. 2018, 61, 3567–3576. [Google Scholar] [CrossRef]
- Calabia, A.; Tang, G.; Jin, S. Assessment of new thermospheric mass density model using NRLMSISE-00 model, GRACE, Swarm-C, and APOD observations. J. Atmos. Sol.-Terr. Phys. 2020, 199, 105207. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Ercha, A.; Ridley, A.J.; Zhang, D.; Xiao, Z. Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms. J. Geophys. Res. 2012, 117, A08317. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Huang, F.; Chen, X.; Zhong, J.; Ren, D.; Wang, W.; Yue, X.; Luan, X.; Jia, M.; Dou, X.; et al. Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017? J. Geophys. Res. Space Phys. 2018, 123, 3217–3232. [Google Scholar] [CrossRef]
- He, S.; Zhang, D.; Hao, Y.; Xiao, Z. Statistical study on the occurrence of the ionospheric mid-latitude trough and the variation of trough minimum location over northern hemisphere. Chin. J. Geophys. 2020, 63, 31–46. (In Chinese) [Google Scholar] [CrossRef]
- Forbes, J.M.; Lu, G.; Bruinsma, S.; Nerem, S.; Zhang, X. Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J. Geophys. Res. 2005, 110, A12S27. [Google Scholar] [CrossRef]
- Bruinsma, S.L.; Forbes, J.M. Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophys. Res. Lett. 2007, 34, L14103. [Google Scholar] [CrossRef]
- Ruohoniemi, J.M.; Baker, K.B. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res. Space Phys. 1998, 103, 20797–20811. [Google Scholar] [CrossRef]
- Paetzold, H.K.; Zschörner, H. An annual and a semiannual variation of the upper air density. Geofis. Pura Appl. 1961, 48, 85–92. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J. The “thermospheric spoon”: A mechanism for the semiannual density variation. J. Geophys. Res. Space Phys. 1998, 103, 3951–3956. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; He, M.; Liu, S.; Man, H.; Gao, H.; Li, Y. Longitudinal Variation of Thermospheric Density during Low Solar Activity from APOD Observations. Atmosphere 2023, 14, 155. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, J.; Li, Y.; Zhang, X.; Xiao, C.; Chen, G.; Zheng, X.; Zhang, Z. Study on the Hemispheric Asymmetry of Thermospheric Density Based on In-Situ Measurements from APOD Satellite. Atmosphere 2023, 14, 714. https://doi.org/10.3390/atmos14040714
Ai J, Li Y, Zhang X, Xiao C, Chen G, Zheng X, Zhang Z. Study on the Hemispheric Asymmetry of Thermospheric Density Based on In-Situ Measurements from APOD Satellite. Atmosphere. 2023; 14(4):714. https://doi.org/10.3390/atmos14040714
Chicago/Turabian StyleAi, Jiangzhao, Yongping Li, Xianguo Zhang, Chao Xiao, Guangming Chen, Xiaoliang Zheng, and Zhiliang Zhang. 2023. "Study on the Hemispheric Asymmetry of Thermospheric Density Based on In-Situ Measurements from APOD Satellite" Atmosphere 14, no. 4: 714. https://doi.org/10.3390/atmos14040714
APA StyleAi, J., Li, Y., Zhang, X., Xiao, C., Chen, G., Zheng, X., & Zhang, Z. (2023). Study on the Hemispheric Asymmetry of Thermospheric Density Based on In-Situ Measurements from APOD Satellite. Atmosphere, 14(4), 714. https://doi.org/10.3390/atmos14040714