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Abstract: In this article, high spatiotemporal resolution data obtained by the atmospheric density
detector carried by China’s APOD satellite are used to study the hemispheric asymmetry of ther-
mospheric density. A detailed analysis is first performed on the dual magnetic storm event that
occurred near the autumnal equinox on 8 September 2017. The results show that the enhancement
ratio of atmospheric density in the southern polar region (SPR) on the duskside was approximately
1.33–1.65 times that of the northern polar region (NPR), demonstrating a strong hemispheric asym-
metry of thermospheric atmospheric density response during the magnetic storm. However, the
asymmetry response was smaller on the dawnside, suggesting that the hemispheric density response
asymmetry is related to local time (LT). The energy injection in high-latitude regions increases local
atmospheric density and forms traveling atmospheric disturbances (TADs). TADs can propagate
to low-latitude regions over several hours and affect the global distribution of thermospheric atmo-
spheric density. Similarly, the geomagnetic index fitting slope of SPR relative density difference is
greater than that of NPR. The SuperDARN convection pattern indicates that the plasma convection
velocity of SPR is significantly greater than that of NPR, indicating that joule heating caused by
neutral friction of ions in the Southern Hemisphere may be stronger. Subsequently, an analysis of an-
nual solar activity and seasons was carried out on the thermospheric NPR, SPR atmospheric density,
and their differences from December 2015 to December 2020. The results show that thermospheric
atmospheric density decreases overall as the number of sunspots decreases. The differences between
the NPR and SPR atmospheric densities in the thermosphere exhibits a noticeable annual periodicity.
The NPR and SPR atmospheric densities appear to have different distribution characteristics in
different seasons. The NPR density peak is mainly in March or April. In particular, the “double-peak”
phenomenon occurred in 2017, with peaks in March and September, while the most obvious feature
of SPR atmospheric density is that its minimum value occurs in the summer months of June and
July. This paper reveals the annual, seasonal, and magnetic storm response characteristics of the
hemispheric asymmetry of thermospheric atmospheric density, which has significant implications for
the study of multilayer energy coupling of the magnetosphere–ionosphere–thermosphere.

Keywords: atmospheric density; thermosphere; hemispheric asymmetry; TADs; plasma convection

1. Introduction

The thermosphere is a layer of the Earth’s atmosphere that extends from 80 km to
1000 km above the surface. The primary sources of energy input to the thermosphere
include solar extreme ultraviolet (EUV) radiation, auroral particle precipitation, and joule
heating in high-latitude regions, which strongly influence the thermosphere’s structure
and dynamics. Quantifying the degree of hemispheric asymmetric response of these main
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energy input sources to the neutral density and composition of the thermosphere has
always been an important research topic. Due to the different solar irradiation received
in seasons, thermosphere mass density and composition can also show corresponding
seasonal variations [1,2]. For instance, Qian et al. [3] combined Thermosphere–Ionosphere–
Electrodynamics General Circulation Model (TIE-GCM) simulations and TIMED/GUVI
observations to show that the neutral density and composition of the thermosphere presents
strong seasonal variations, with maximums near the vernal equinox, primary minimums in
the Northern Hemisphere summer, and secondary minimums in the Southern Hemisphere
summer. Furthermore, high-latitude joule heating, which is a source of energy input to the
thermosphere, is affected by solar wind conditions as well as geomagnetic activity [4,5].
During geomagnetic storms, the enhanced high-latitude joule heating causes thermal
expansion of the thermosphere, which in turn causes disturbances in mass density. For
example, Sutton et al. [6] analyzed accelerometer data from the CHAMP satellite at an
altitude of around 410 km during the geomagnetic storm on 29 October to 1 November
2003, and found that the atmospheric density increased by 200–300%. Pham et al. [7]
used accelerometer data from the CHAMP and GRACE satellites during the 24–25 August
2005 geomagnetic storm to detect dramatic perturbations of atmospheric density in the
global thermosphere. Particle precipitation in the polar cusp also plays a certain role in the
rise of atmospheric density in the thermosphere. The results of Liu et al. [8] showed that
atmospheric density at high latitude is highly structured. Later, Zhang et al. [9] used the
simulation results of the coupled magnetosphere–ionosphere–thermosphere (CMIT) model
to explain that high-latitude density structure is related to soft electron precipitation. Some
studies also indicated that the small-scale field-aligned current in the polar cusp region can
cause an increase in the atmospheric density of the thermosphere [10,11]. In addition, joule
heating and particle precipitation in the high-latitude region generate upwelling air [10]
that changes the density ratio of oxygen to nitrogen (∑O/N2) in the thermosphere [12,13].

Previous studies have shown that there is hemispheric asymmetry in the response
of thermosphere mass density to geomagnetic storms [14–16]. The analysis results of
the magnetic storm event on 21–22 November 2003 showed that there was a significant
difference in the density response ratio of north and south geomagnetic latitude 72◦ [14].
It has also been found that differences in hemispheric response in thermosphere density
are related to local time (LT). Li and Lei [17] analyzed the thermospheric variations during
the geomagnetic storm periods that occurred near the autumnal equinox in October 2016
and September 2017, respectively, using the precise orbit determination derived from
GRACE, Swarm-A, and Swarm-B satellite measurements of atmospheric mass density. The
results showed that the density perturbation around 16 LT of the Southern Hemisphere
was stronger than the Northern Hemisphere. However, the density enhancements in the
Northern and Southern hemispheres is almost symmetrical around 08:00/20:00 LTs. This
difference in LT-related thermosphere density hemispheric response may be related to
the asymmetry of joule heating LT distribution at high latitudes, but there are currently
insufficient observational data to prove it.

Therefore, we need to discuss the external source asymmetry that leads to differences in
thermosphere density response. First, the asymmetry of solar EUV radiation may result in
an asymmetry in ionospheric conductivity, which further affects plasma convection [18,19]
and field-aligned current [10]. In the past, many studies have analyzed plasma convection
derived from satellite in situ measurements, such as DMSP and Super Dual Auroral Radar
Network (SuperDARN) data. Koustov et al. [20] exhibited an asymmetric two-cell convec-
tion pattern with a large dusk cell by combining SuperDARN and swarm data. Second,
auroral particle precipitation also has hemispheric asymmetry. By analyzing data from the
Global Ultraviolet Imager aboard the Thermosphere–Ionosphere–Mesosphere Energetics
and Dynamics satellite from 2002 to 2007, Liou and Mitchell [21] found that the dayside
auroral energy flux showed a small north–south asymmetry. Moreover, north–south geo-
magnetic field asymmetry may cause differences in plasma convection, such as large tilt
angle in the Southern Hemisphere, resulting in greater plasma drift velocity compared to
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the Northern Hemisphere [14,22]. Therefore, quantifying the difference in thermosphere
density response caused by external input sources is of great significance for understanding
the coupling between the solar wind–magnetosphere–ionosphere–thermosphere system.
In this study, high spatial and temporal resolution data of thermospheric density measured
in situ by the atmospheric density detector aboard China’s APOD satellite are used to
investigate the hemispheric asymmetry characteristics of thermospheric density. Section 2
provides a brief introduction to the APOD satellite and its payload. In Section 3, the geo-
magnetic response of thermospheric density in both hemispheres during a dual magnetic
storm event that occurred near the autumnal equinox on 8 September 2017 is studied, as the
magnetic storm occurred near the equinox and is therefore easier to analyze. Then, seasonal
and annual solar activity phenomena of northern polar region (NPR—latitude above 60◦

N) and southern polar region (SPR—latitude above 60◦ S) thermospheric densities, as well
as their differences, are explored from December 2015 to December 2020.

2. Satellite Description

The APOD (Atmospheric Density Detection and Precise Orbit Determination) satellite
was launched on 20 September 2015, and entered a nearly circular orbit with an inclination
of 97.4◦ and an altitude of approximately 460 km on 27 October 2015. It is the first Chinese
micro–nanosatellite platform with the primary scientific goals of detecting thermosphere
atmospheric density and precise satellite orbit determination [23]. The high-inclination
orbit of APOD is characterized by its ability to cover a large latitude range during the
ascending and descending phases. As shown in Figure 1b, the ascending and descending
branches of the APOD orbit are on the duskside and dawnside, respectively. In addition,
the orbital precession of the satellite is very small: local time of the descending node drifted
from 6.2 h in December 2015 to 9.0 h in December 2020, with a change of about 3 h during
the period. The main instruments carried by APOD include the Atmospheric Density
Detector (ADD) and a GNSS receiver. The atmospheric density data used in this paper are
derived from the in situ measurements of the ADD, which directly measures pressure and
temperature in the sampling chamber with sampling rate of 1 Hz and measurement error
of density about 10% [24]. The high temporal and spatial resolution of the ADD provides a
good opportunity to analyze the hemispheric response differences in thermospheric density
during magnetic storms, as well as the detailed wave characteristics.
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Figure 1. Changes in the spatial position of the APOD satellite from December 2015 to December
2022: (a) altitude, with the solid black line indicating the monthly mean altitude; (b) latitude and
local time (LT) relationship, with the red arrow indicating the direction of the satellite’s motion on a
single orbit, and the black arrow indicating the direction of the satellite’s LT precession.

From Figure 1a, it can be seen that the monthly mean altitude of the APOD satellite
orbit decreased from an initial ~475 km in December 2015 to ~445 km in December 2020.
Due to the existence of a certain eccentricity in the orbit, the altitude difference between the
apogee and perigee can reach about 30 km. Some past research on thermospheric neutral
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atmospheric density usually normalized the original detection value of atmospheric density
to a certain altitude using the NRLMSISE-00 model, so as to reduce the error caused by the
orbital altitude change [17,25]. However, when the diffusion balance condition is broken
during a magnetic storm, the normalization of the density may lead to greater errors [8,26].
Therefore, in this study, the raw atmospheric density measurements were not normalized,
and the relative differences in density are analyzed to minimize the influence of density on
altitude dependence.

3. Results
3.1. Analysis of the 8 September 2017 Geomagnetic Event
3.1.1. Geomagnetic Conditions during the Storm on 8 September 2017

Figure 2 shows the variations in solar wind and geomagnetic disturbance parameters
from 7 to 10 September 2017. The magnetic storm event on 8 September was a dual storm
caused by the interaction of coronal mass ejection (CME) and the magnetosphere [27]. As
the event occurred near the autumnal equinox, it was conducive to studying the hemi-
spheric response differences of density during the magnetic storm period. From Figure 2a,b,
it can be seen that at around 00:00 UT on 8 September, there was a sudden increase in solar
wind velocity and dynamic pressure (the wind speed and dynamic pressure increased from
473 km/s and 1.5 nPa to 690 km/s and 4.35 nPa, respectively), while the interplanetary
magnetic field (IMF) component Bz decreased to −24.2 nT, and both AE and Ap indices
quickly increased to 1157 nT and 207 nT, respectively. The first magnetic storm reached its
peak, and the Dst index decreased from an initial value of 13 nT to −122 nT. Subsequently,
the solar wind velocity continued to rise slightly, and the dynamic pressure remained
oscillating back and forth before rapidly increasing to 7.93 nPa at 10:00 UT. Then, Bz began
to turn from north to south, providing the basic conditions for the injection of solar wind
energy and momentum into the Earth’s space. The corresponding AE and Ap indices
quickly increased to 1442 nT and 236 nT. The first magnetic storm had not yet returned
to its predisturbance state (at 10:30 UT, the Dst index was −44 nT), and then the second
magnetic storm began to approach, with the minimum value of Dst index during the main
phase being −109 nT. Therefore, based on the effects of the first magnetic storm, the impact
of the second storm on the thermosphere might be greater.

3.1.2. Mass Density Behavior from 7 to 10 September 2017

Figure 3 displays the hemispheric response differences of the thermospheric density
measured by the ADD instrument during the magnetic storm period from 7 to 10 September
2017. The top row of Figure 3 shows the density changes on the dusk side around 19:20 LT.
From Figure 3a, it can be seen that there is a neutral density trough in the range of 40◦ N
to 60◦ N around 04:00 UT, before the magnetic storm on 7 September, which is similar to
the mid-latitude trough phenomenon in the Northern Hemisphere ionospheric electron
density [28]. Figure 3b,c show that after the arrival of the first magnetic storm, the density
values near 80◦ N in the Arctic increased to about 1.32 × 10−12 kg/m3, while the density
values around 80◦ S in the Southern Hemisphere changed from 0.48 × 10−12 kg/m3 during
quiet periods to 0.87 × 10−12 kg/m3. Moreover, compared to the first magnetic storm,
the density perturbation range and uplift amplitude caused by the second storm were
larger, and the disturbance lasted longer, approximately 15 h. In addition, the density
value of SPR slightly increased during 09:00–12:00 UT on the 7th, as shown in Figure 3c,
which corresponds to the first peak of the AE index in Figure 2d. The density perturbation
responses of NPR and SPR have a lag of several hours with respect to the Ap and Dst
geomagnetic indices. Similar to the presentation of the density on the duskside, the second
row in Figure 3 shows the response of the density to the magnetic storm on the dawnside
(~07:20 LT). Figure 3e shows that during the first magnetic storm, the density increased
to about 1.38 × 10−12 kg/m3 near 80ºN in the Arctic, and the density disturbance range
was in the region of 65◦–80◦ N. Unlike the propagation of density disturbances on the
duskside, the propagation of density disturbances on the dawnside NPR seems to be
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strongly “resisted,” and the peak density disturbance decreases rapidly in the latitude
direction, as if it is “confined” in the high-latitude region. In addition, the density at low
and mid-latitudes increases significantly, as shown in Figure 3a,e. This is mainly caused by
traveling atmospheric disturbances (TADs) and will be discussed in detail. To reduce the
density errors caused by changes in orbital altitude, the density during the quiet period was
taken as a reference value, and the deviation of the density during the disturbance period
relative to the reference value was calculated to quantify the differences in density response
between the two hemispheres during the magnetic storm, as shown in Figure 3d,h. The
results show that the relative density difference of the SPR is higher than that of the NPR,
indicating a difference in density response in the high-latitude regions of the Northern and
Southern hemispheres. The enhancement ratio of atmospheric density in the SPR is about
1.33–1.65 times that of the NPR on the duskside, and the north–south response difference
on the dawnside is smaller than on the duskside. During this period, the mean relative
density difference of the NPR and SPR on the duskside and dawnside was −9.01% and
−5.59%, respectively. At the same time, the dependence of the north–south high-latitude
density response difference on LT is also reflected.
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Figure 2. Variations in solar wind and geomagnetic parameters from 7 to 10 September 2017. From
top to bottom are (a) solar wind velocity, (b) solar wind dynamic pressure, (c) interplanetary magnetic
field Bx, By and Bz, (d) AE, (e) Ap, and (f) Dst.
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Figure 3. Thermospheric density response during the geomagnetic storm from 7 to 10 September
2017. Panels (a,e) display the global distribution of thermospheric density variations with UT and
latitude on the dusk- and dawnside, respectively. Panels (b,c) show the density latitudinal profiles
for the northern polar region (NPR, above 60◦ N) and southern polar region (SPR, above 60◦ S) on the
duskside, with corresponding black lines indicating the Ap and Dst geomagnetic indices. Similarly,
panels (f,g) display the density latitudinal profiles for the NPR and SPR on the dawnside. Panels (d,h)
show the relative density difference on the duskside and dawnside, respectively, with the colored
lines indicating the relative density difference for the NPR and SPR and the black line indicating the
difference in relative density difference between the NPR and SPR, with the mean difference also
labeled on the plot.

As analyzed earlier, during periods of strong geomagnetic disturbances, a large
amount of energy is deposited from the magnetosphere to the high-latitude thermosphere,
resulting in a sudden increase in atmospheric density at high latitudes. This atmospheric
disturbance, generated by joule heating, can propagate or diffuse from high-latitude re-
gions to lower latitudes, the equator, and even the opposite hemisphere, and is referred
to as TADs by many researchers [7,29,30]. Figure 4 shows the changes in the atmospheric
density distribution on the morning side of the APOD satellite from the 5th to the 10th. It
should be noted that the atmospheric density of the Northern Hemisphere is slightly higher
than that of the Southern Hemisphere during the quiet period (black dashed line). This
is because the Northern Hemisphere is in summer during this period and thus warmer
than the Southern Hemisphere. When a magnetic storm occurs (magenta dotted line), the
overall global atmospheric density rises by nearly 50%, and there is a strong disturbance
in the density of the Northern Hemisphere above 70◦ N. At the same time, TAD propa-
gation is clearly observed in the mid-latitude regions of the Southern Hemisphere. As
shown in Figure 4b, TADs began to disappear after the first geomagnetic storm. With the
arrival of the second storm, disturbances in the high-latitude atmosphere of the Northern
Hemisphere formed TADs, which continued to strengthen and propagate to the 30◦ N
region as energy continued to be injected. At the same time, TADs formed in the Southern
Hemisphere near 65◦ S and began to transport towards lower latitudes. After 2 h, at 16:00
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UT, TADs in both hemispheres propagated to latitudes near 20◦ (as shown by the solid
green line) and continued to propagate towards the equator, interfered with each other,
and then spread to the opposite hemisphere, as shown by the solid blue line. Therefore,
energy injection in high-latitude regions increases local atmospheric density and forms
TADs during geomagnetic storms. TADs can propagate to low-latitude regions within
hours and affect the all-latitude distribution of thermospheric atmospheric density.
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Figure 4. Propagation process of TADs on the dawnside during magnetic storm. Panel (a) displays
the global distribution of thermospheric density variations with UT (from 5 to 11 September 2017)
and latitude on the dawnside; Panel (b) shows the variation of density at different UTs with latitude
during magnetic storm.

In order to more clearly and quantitatively analyze the asymmetry of the Northern and
Southern hemisphere responses of the thermospheric atmospheric density caused by this
magnetic storm event, a linear fitting discussion was carried out using the Dst/Ap indices
and the relative density difference of NPR and SPR, as shown in Figure 5. The magenta
and green dots in Figure 5a represent the relative density difference of NPR and SPR,
respectively, as well as the linear regression lines fitted with Dst. Similarly, the blue and red
dots in Figure 5b represent the relative density difference of NPR and SPR, respectively, as
well as the linear regression lines fitted with Ap. The corresponding regression slopes are
also indicated in each subfigure, and the data points in all subfigures include both the dawn
and dusk sectors. As shown in the figure, the regression slopes of the NPR relative density
difference with respect to the Dst and Ap indices are 0.467 and 0.247, respectively, while
the corresponding SPR relative density difference regression slopes are 0.545 and 0.269.
Therefore, the SPR relative density difference has a higher regression slope than the NPR,
indicating a stronger response of Southern Hemisphere high-latitude atmospheric density
to the geomagnetic storm event. This is consistent with the previously discussed difference
in the geomagnetic storm response of atmospheric density between the two hemispheres.
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3.1.3. Explanation of Density Response Asymmetry

From the previous analysis of the magnetic storm event of 8 September 2017, the den-
sity response in the SPR is higher than the NPR. In this section, we explain this asymmetry
phenomenon through plasma convection in the Northern and Southern hemispheres. Be-
cause the event occurs near the autumnal equinox, the zenith angle of the two hemispheres
relative to the sun are similar, so the difference in conductivity between the NPR and SPR
is small. SuperDARN, an international terrestrial high-frequency radar network, measures
the line-of-sight (LOS) component of plasma E × B drift of ionosphere at high latitudes in
both hemispheres. The plasma convection data used in this section are fitted velocities. The
following steps are required to perform from LOS velocity to fitted velocity. First, the LOS
velocity data are smoothened by median filtering of the measurements of several adjacent
beams and gates and three consecutive sweeps. The obtained velocities are then sorted
and filled with a uniform magnetic latitude and longitude grid. Finally, the obtained grid
velocity is fitted to a plasma flow statistical model with solar wind and IMF conditions, the
Earth’s magnetic field, and dipole tilt angle as input parameters [20,31].

Figure 6 shows the plasma flow pattern at high latitudes measured by the SuperDARN
that consists of ten radars in the Northern Hemisphere and six radars in the Southern
Hemisphere. The convection pattern is represented by a flow velocity vector (colored
vector) at each grid point (corresponding color point) and a line with equal electric potential
(blue and red closed lines). The pattern uses magnetic latitude (MLAT)–magnetic local
time (MLT) coordinates at 2 min intervals. The 17:52–17:54 UT corresponds to the moment
when the density response asymmetry of the NPR and SPR is large in Figure 3. The data in
Figure 6a,b show the SuperDARN convection pattern of an asymmetric two-cell with larger
dusk cell, which is consistent with previous analysis that the density response asymmetry
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on the duskside greater than dawnside. In addition, the plasma convection velocity of
the SPR is significantly greater than that of the NPR from Figure 6a,b. The convection
velocity of 11–12 MLT and MLAT around 73◦ in the Northern Hemisphere is about 300 m/s,
while the Southern Hemisphere can reach 600–800 m/s. This north–south convection
asymmetry indicates stronger joule heating caused by ion-neutral friction in the Southern
Hemisphere, resulting in density response asymmetry in the NPR and SPR. In addition
to this UT range, plasma convection patterns of the Southern and Northern hemispheres
during the main phase of the second magnetic storm are analyzed. The results render
that plasma convection velocity in the high-latitude region of the Southern Hemisphere
is larger than in the Northern Hemisphere during the main phase. This means that the
energy injected into the polar regions of the Southern Hemisphere may be higher than in
the Northern Hemisphere.
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3.2. Mid- and Long-Term Observations of North-South Asymmetry

The previous section previously analyzed the differences in atmospheric density re-
sponse between the NPR and SPR in a single geomagnetic storm event. This section
discusses the mid- to long-term variations in north–south asymmetry in thermospheric
high-latitude atmospheric density. Figure 7 shows the time evolution of the thermospheric
NPR, SPR, global region (GR) atmospheric density, and NPR-SPR atmospheric density
difference, as well as the corresponding geomagnetic indices Dst and Ap, observed by
the APOD satellite from December 2015 to December 2020.The results indicate that the
thermospheric atmospheric density exhibits distinct features due to annual solar activity,
seasonal variation, and disturbance under different geomagnetic activity conditions. The
thermospheric GR atmospheric density decreases as the sunspot number decreases, as
shown in Figure 7c,d. Figure 7e,f show that NPR and SPR atmospheric density have sea-
sonal characteristics. NPR atmospheric density is lower in winter than in other seasons,
while SPR atmospheric density is lower in summer. The thermospheric NPR and SPR
atmospheric density also reflect sudden increases in short-term ranges due to geomagnetic
disturbances. Figure 7g shows the percentage difference in atmospheric density between
the NPR and SPR, calculated as (ρNPR − ρSPR)/(ρNPR + ρSPR). The results indicate that
the differences in atmospheric density between the high-latitude regions of the two hemi-
spheres exhibit a significant annual periodicity. Therefore, thermospheric atmospheric
density parameters are affected by annual solar activity and different seasons.
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To gain a clearer understanding of the seasonal variation characteristics of thermo-
spheric density, we analyzed the relative difference of the monthly mean NPR, SPR, and
GR densities from their annual mean values during the period from 2016 to 2020, as shown
in Figure 8. In Figure 8b, the most obvious feature is the minimum value occurring in the
summer months of June and July and the maximum in winter, which is expected. For the
Northern Hemisphere, however, the density season characteristics are complicated. Except
that the density peak of 2008 in June in summer, the peaks in other years were all in March
or April in spring. In particular, the NPR density in 2017 shows two peaks, located in April
and September respectively. This “double-peak” phenomenon is roughly the same as past
studies [26,32]. Therefore, NPR and SPR densities in different hemispheres exhibit different
distribution characteristics in terms of seasonality. Figure 8c shows that the thermospheric
GR mean density reaches its maximum in the months of the spring and autumn equinoxes,
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while its minimum value occurs in the summer, exhibiting similar features to the SPR
density distribution. This seasonal asymmetry in thermosphere density is thought to result
from interhemispheric circulation on a global scale [33].
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4. Conclusions

In this study, the in situ atmosphere density data from the Atmosphere Density Detec-
tor (ADD) onboard the APOD satellite were used to analyze the asymmetry of atmospheric
density in the northern and southern high-latitude regions of the thermosphere. Firstly, the
geomagnetic response of atmospheric density in both hemispheres of the thermosphere
during a dual magnetic storm event near the autumnal equinox on 8 September 2017 was
studied. Then, the seasonal and annual solar activity characteristics of the atmospheric
density differences between NPR and SPR in the thermosphere from December 2015 to
December 2020 were explored over a five-year period under different geomagnetic activity
conditions. The main results are summarized as follows.

1. For the magnetic storm event on 8 September 2017, the duskside SPR atmospheric
density enhancement ratio is about 1.33–1.65 times that of NPR, showing a strong
hemisphere density response asymmetry during the magnetic storm period. In the
dawnside, this north–south response difference is smaller and also shows a depen-
dence on LT differences. Energy injection in high-latitude regions leads to local atmo-
spheric density enhancement and forms traveling atmospheric disturbance (TADs).
These TADs can propagate to mid-low latitude regions and affect the global distri-
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bution of thermospheric atmospheric density, with a propagation time in the order
of hours. The relationship between the Dst and Ap indices and the hemisphere den-
sity enhancement ratio was quantitatively analyzed, and the fitting slope of the SPR
relative density difference is higher than that of the NPR. This response asymmetry
can be explained by SuperDARN plasma convection velocity. The plasma convection
velocity of the SPR is significantly greater than that of the NPR, which indicates
stronger joule heating caused by ion-neutral friction in the Southern Hemisphere.

2. Analysis of the long-term variation in atmospheric density asymmetry in the ther-
mosphere high-latitude region of both hemispheres showed that it is influenced by
solar activity, season, and different levels of geomagnetic disturbances. The thermo-
spheric global (GR) atmospheric density decreases overall with decreasing sunspot
numbers. The difference in atmospheric density between NPR and SPR has a clear
annual periodicity. The distribution of NPR and SPR atmospheric density shows
different seasonal characteristics. The NPR density peak is mainly in March or April.
In particular, the “double-peak” phenomenon occurred in 2017, with peaks in March
and September, respectively, while the largest feature of SPR atmospheric density is
that its minimum value occurs in the summer months of June and July.

Some past studies have also shown that the interplanetary magnetic field and dipole
tilt angle have obvious modulation of plasma convection, thereby affecting mass density
hemispheric asymmetry. In addition, neutral atmospheres have tidal effects. The relation-
ship between thermosphere density asymmetry and those will be explored in the future.
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