Analysis of the Applicability of Multisource Meteorological Precipitation Data in the Yunnan-Kweichow-Plateau Region at Multiple Scales
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Site Precipitation Data
2.2.2. Multisource Meteorological Precipitation Data
2.2.3. Data Preprocessing
3. Methods
4. Results and Analysis
4.1. Timescale Analysis
4.1.1. Annual Scale
4.1.2. Seasonal Scale
4.1.3. Monthly Scale
4.1.4. Daily Scale
4.2. Analysis of Different Precipitation Intensities
4.3. Spatial Scale Analysis
4.3.1. Spatial Distribution of Precipitation Deviation Values
4.3.2. Evaluation of the Spatial Distribution of the Indicators
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Yang, S.; Yatagai, A.; Hayasaka, T.; Fukushima, Y.; Liu, C. A guage based analysis of daily precipitation over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Z.-G.; Sang, Y.-F.; Yang, M.-Y.; Liu, X.-C.; Gong, T.-L. A comparative study on the quality of precipitation data from different sources in the Yarlung Tsangpo River basin. Adv. Geogr. Sci. 2016, 35, 339–348. [Google Scholar]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Cao, Y. Accuracy analysis of TRMM 3B43 satellite precipitation data in the Yellow River basin. Remote Sens. Technol. Appl. 2019, 34, 1111–1120. [Google Scholar]
- Wang, G. Accuracy Assessment of Multiple Precipitation Products in the Qinba Mountains. Master’s Thesis, Northwestern University, Evanston, IL, USA, 2018. [Google Scholar]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett. 2009, 36, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The tropical rainfall measuring mission(TRMM) sensor package. J. Atmos. Ocean Technol. 1998, 15, 809–917. [Google Scholar] [CrossRef]
- Tang, G.; Wan, W.; Zeng, Z.; Guo, X.; Li, N.; Long, D.; Hong, Y. An overview of the Global Precipitation Measurement (GPM) program and its latest progress. Remote Sens. Technol. Appl. 2015, 30, 607–615. [Google Scholar]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.I.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M. A Kalman filter approach to the global satellite mapping of precipitation(GSMaP) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn. 2009, 87A, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at a high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.; Janowiak, J. CMAP: The CPC merged analysis of precipitation. Meas. Precip. Space 2007, 28, 319–328. [Google Scholar]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multi-satellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, M.; Wang, H. Application of CMADS, CFSR and Meteorological data in Hunhe River Basin. China Rural Water Hydropower 2020, 9, 132–137. [Google Scholar]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Munoz-Sabater, J.; Pappenberger, F. ERA-Interim/Land:a global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The modern-era retrospective analysis for research and applications, version 2(MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Onogi, K.; Tsutsui, J.; Koide, H.; Sakamoto, M.; Kobayashi, S.; Hatsushika, H.; Matsumoto, T.; Yamazaki, N.; Kamahori, H.; Takahashi, K.l. The JRA-25 Reanalysis. Meteorol. Mag. 2017, 85, 369–432. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.F.; Qian, L.; Huang, G.M.; Liu, X.G.; Wang, Y.C.; Bai, H.; Wu, S.F. Assessment of the impact of improved CLDAS precipitation drive on regional snow simulation in China. Meteorology 2018, 44, 985–997. [Google Scholar]
- He, J.; Yang, K. Regional High Spatial and Temporal Resolution Ground Meteorological Elements Driven Dataset for China (1979–2019); National Qinghai-Tibet Plateau Scientific Data Center: Lanzhou, China, 2019. [Google Scholar]
- Meng, X. SWAT Model Chinese Atmospheric Assimilation Drive Dataset (CMADS V1.2); Cold and Arid Regions Science Data Center: Lanzhou, China, 2016. [Google Scholar]
- Wang, J.; Chen, H.; Xu, C.; Li, X.; Zeng, Q. Accuracy of TRMM satellite rainfall data and runoff simulation evaluation. Water Resour. Res. 2016, 5, 12. [Google Scholar]
- Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of High-Resolution Satellite Precipitation Products over Very Complex Terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051. [Google Scholar] [CrossRef]
- Michot, V.; Vila, D.; Arvor, D.; Corpetti, T.; Ronchail, J.; Funatsu, B.M.; Dubreuil, V. Performance of TRMM TMPA 3B42 V7 in Replicating Daily Rainfall and Regional Rainfall Regimes in the Amazon Basin (1998–2013). Remote Sens. 2018, 10, 1879. [Google Scholar] [CrossRef] [Green Version]
- Sambou, S.; Dacosta, H.; Deme, A.; Diouf, I. Contribution of TRMM 3B42 Data to Improve Knowledge on Rainfall in the Kayanga/Geba River Basin (The republic of Guinea, Senegal and Guinea-Bissau). Eur. Sci. J. 2018, 14, 260–275. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Fu, S.; Sun, J.; Zheng, F.; Wei, J.; Ma, Z. Comparative Evaluation of the Performances of TRMM-3B42 and Climate Prediction Centre Morphing Technique (CMORPH) Precipitation Estimates over Thailand. J. Meteorol. Soc. Jpn. 2021, 99, 1525–1546. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, X.; Li, J.; Huang, Z. Study on the applicability of TRMM satellite precipitation inversion data in the Pearl River basin using the Dongjiang and Beijiang rivers as examples. Adv. Water Sci. 2017, 28, 174–182. [Google Scholar]
- Yu, L.; Zhang, Y.; Zhang, J.; Yang, Y. Preliminary assessment of the applicability of satellite precipitation products in Taihang Mountains. Highl. Meteorol. 2020, 39, 819–829. [Google Scholar]
- Liu, J.; Zhu, A.; Duan, Z. Evaluation of TRMM 3B42 Precipitation Product Using Rain Gauge Data in Meichuan Watershed, Poyang Lake Basin, China. J. Resour. Ecol. 2012, 3, 359–366. [Google Scholar]
- Zhang, L.; Kang, Y.; Yue, Q.; Tang, J.; Xu, J.; Wang, J.; Hao, Z. Applicability analysis of four kinds of satellite precipitation data in the source region of the Yellow River. Yellow River 2021, 43, 29–33. [Google Scholar]
- Hu, Y.; Jia, Z. Accuracy assessment and comparative analysis of multi-source satellite precipitation products in southwest China. Water Resour. Res. 2021, 10, 516–524. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, R.; Xiang, J.; Qin, G. Study on the temporal and spatial applicability of three precipitation products in the Yalong River Basin. Hydrology 2020, 40, 14–21. [Google Scholar]
- Yang, K.; He, J. China Regional Surface Meteorological Factor—Driven Dataset (1979–2018); National Data Center for Tibetan Plateau Science: Tibetan, China, 2020. [Google Scholar]
- Wu, Q.-X.; Ma, S.-Y.; Zhang, Z.-H.; Guo, J.-K.; Zhang, S.-Q. Comparative study on the applicability of five precipitation products to monthly precipitation in the Upper and middle and lower reaches of Shule River. J. Glaciol. Geocryol. 2019, 41, 470–482. [Google Scholar]
- Gao, L.; Zhang, L.; Shen, Y.; Zhang, Y.; Zhang, W. Evaluation of the applicability of ErA-Interim and CMFD Meteorological Driven Data in the Irtysh River Basin, Xinjiang. J. Glaciol. Geocryol. 2022, 44, 179–187. [Google Scholar]
- Wang, L.; Zhang, X.; Fang, Y.; Xia, D. Assessment of applicability of regional ground meteorological element datasets in China in the upper Yangtze River basin. Hydropower 2017, 43, 18–22. [Google Scholar]
- Li, Y.; Pang, B.; Ren, M.; Shi, S.; Peng, D.; Zhu, Z.; Zuo, D. Evaluation of Performance of Three Satellite-Derived Precipitation Products in Capturing Extreme Precipitation Events over Beijing, China. Remote Sens. 2022, 14, 2698. [Google Scholar] [CrossRef]
- Ren, M.F.; Xu, Z.X.; Pang, B.; Liu, W.F.; Liu, J.T.; Du, L.G.; Wang, R. Assessment of Satellite-Derived Precipitation Products for the Beijing Region. Remote Sens. 2018, 10, 1914. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Yang, J.; Chen, H.; Liu, J.; Ji, Q.; Wang, Y.; Tang, F. Evaluation of Extreme Precipitation Based on Three Long-Term Gridded Products over the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3010. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Chen, J.; Zhao, L.; Zhao, J.; Qiao, Y.; Shi, J. A comprehensive evaluation of mainstream gridded precipitation datasets in the cold season across the Tibetan Plateau. J. Hydrol. Reg. Stud. 2022, 43, 101186. [Google Scholar] [CrossRef]
- Wen, T.T.; Guo, Y.X.; Dong, S.R.; Dong, Y.Z.; Lai, X.L. Assessment of applicability of CRU, ERA5, and CMFD grid point precipitation data on the Tibetan Plateau from 1979–2017. Arid Zone Res. 2022, 39, 684–697. [Google Scholar]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the Han River Basin in the Korean Peninsula, East Asia. Water 2022, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Dao, D.M.; Lu, J.; Chen, X.; Kantoush, S.A.; Binh, D.V.; Phan, P.; Tung, N.X. Predicting Tropical Monsoon Hydrology Using CFSR and CMADS Data over the Cau River Basin in Vietnam. Water 2022, 13, 1314. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Meng, X.; Zhou, Y.; Lai, Y.; Cao, Y. Comparison Study of Multiple Precipitation Forcing Data on Hydrological Modeling and Projection in the Qujiang River Basin. Water 2020, 12, 2626. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, J.; Zhang, X.; She, D.; Liu, J.; Li, P. Multi-Scenario Integration Comparison of CMADS and TMPA Datasets for Hydro-Climatic Simulation over Ganjiang River Basin, China. Water 2020, 12, 3243. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M.; Cai, S. Investigate the Applicability of CMADS and CFSR Reanalysis in Northeast China. Water 2020, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, Y.Q. Climate change characteristics of precipitation and rainy days in southwest China in the last 48 years. Highl. Meteorol. 2014, 2, 372–383. [Google Scholar]
- Zhao, J.; Chen, C. Geography of China; Higher Education Press: Beijing, China, 1999; 579p. [Google Scholar]
- Jie, Z. Research on Spatial Data Interpolation. Adv. Appl. Math. 2019, 8, 1859–1869. [Google Scholar]
- Li, H.; Chen, B.; Ding, Y.; Zhang, Z. Nearest Neighbor Data Correlation Algorithm Based on Information Entropy Weight. Syst. Eng. Electron. 2020, 42, 806–812. [Google Scholar]
- Yan, J.; Duan, X.; Zheng, W.; Liu, Y.; Deng, Y.; Hu, Z. An Adaptive IDW Algorithm Involving Spatial Heterogeneity. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 97–104. [Google Scholar]
- Guo, J.; Ding, G.; Yang, X.; Tang, Z.; Zhang, H.; Pan, R.; Dai, L. Comparison of spatial and temporal accuracy of multi-source satellite precipitation products in the Yangtze River Basin. South-Water Divers. Water Sci. Technol. (Engl. Chin.) 2022, 20, 230–242+252. [Google Scholar]
- Wang, Z.; Wang, Z.; Yang, Y.; Wu, Y. Comparative analysis of the applicability of remote sensing precipitation products and reanalysis precipitation products in Haihe River Basin under multiple time scales. Sci. Technol. Eng. 2021, 21, 2186–2193. [Google Scholar]
- Wu, Q.; Ma, S.; Zhang, Z.; Wang, G.; Zhang, S. Evaluation of nine precipitation products with ground-based measurements during 2001 to 2013 in alpine Upper Reach of Shule River Basin, northeastern edge of the Tibetan Plateau. Theor. Appl. Climatol. 2021, 144, 1101–1117. [Google Scholar] [CrossRef]
- Wu, Y.H.; Guo, L.N.; Zheng, H.X.; Zhang, B.; Li, M.R. Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau. Sci. Total. Environ. 2019, 660, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Fan, D.; Yang, S.; Xue, H.; Zhou, J.; Dang, S.; Cheng, C. Applicability analysis of GPM and TRMM rainfall data in the Yellow River basin. Res. Soil Water Conserv. 2018, 25, 81–87. [Google Scholar]
- Duncan, J.M.; Biggs, E.M. Assessing the accuracy and applied use of satellite-derived precipitation estimates over Nepal. Appl. Geogr. 2012, 34, 626–638. [Google Scholar] [CrossRef]
- Omranian, E.; Sharif, H.O. Evaluation of the Global Precipitation Measurement (GPM) Satellite Rainfall Products over the Lower Colorado River Basin, Texas. J. Am. Water Resour. Assoc. (JAWRA) 2018, 54, 882–898. [Google Scholar] [CrossRef]
- Wu, H.; Liu, D.; Huang, Q.; Zheng, H.; Zou, H.; Ye, N.; Lin, M. Precision evaluation and alternative study of precipitation products in the Loess Plateau. J. Hydroelectr. Eng. 2021, 40, 31–40. [Google Scholar]
Station | Longitude and Latitude | Average Annual Precipitation/mm |
---|---|---|
Yuanjiang Station | 101.59° E, 23.36° N | 751.79 |
Panxian Station | 104.28° E, 25.43° N | 1242.79 |
Huili Station | 102.15° E, 26.39° N | 1096.85 |
Qianxi Station | 106.01° E, 27.02° N | 880.35 |
Hechi Station | 108.02° E, 24.42° N | 1501.97 |
Sinan Station | 108.15° E, 27.57° N | 1061.94 |
Yuanling Station | 110.24° E, 28.28° N | 1466.36 |
Badong Station | 110.22° E, 31.02° N | 1140.10 |
Dataset | Spatial Resolution | Time Resolution | Scope | Time Range | Download Address |
---|---|---|---|---|---|
TRMM 3B42 | 0.25° × 0.25° | Day | 60° N–60° S | 1998–2019 | https://disc.gsfc.nasa.gov (accessed on 1 April 2022) |
CMFD | 0.1° × 0.1° | Day | China | 1979–2018 | http://westdc.westgis.ac.cn (accessed on 1 April 2022) |
CMADS V1.2 | 1/8° × 1/8° | Day | Eastern Asia | 2008–2018 | http://www.cmads.org/ (accessed on 1 April 2022) |
Indicators | Formulas | Range of Values | Optimum Value (Units) |
---|---|---|---|
CC | CC = | [−1, 1] | 1 |
RBIAS | RBIAS = | 0% | |
MAE | MAE = | [0, +∞) | 0 mm |
KGE | KGE = | [0, +∞) | 1 |
POD | POD = | [0, 1] | 1 |
FAR | FAR = | [0, 1] | 0 |
CSI | CSI = | [0, 1] | 1 |
FBIAS | FBIAS = | [0, 1] | 0 |
PDF = | [0, 1] | 1 |
Meteorological Stations | Precipitation Product | |
---|---|---|
≥Threshold | <Threshold | |
≥Threshold | Hit (H) | Miss (M) |
<Threshold | False (F) | Correct negatives (C) |
Precipitation Products | CC | RBIAS (%) | MAE (mm) | KGE |
---|---|---|---|---|
TRMM 3B42 | 0.83 | 3.90 | 143.70 | 0.77 |
CMFD | 0.91 | 1.14 | 96.48 | 0.90 |
CMADS V1.2 | 0.73 | −9.34 | 197.06 | 0.70 |
Product | CC | RBIAS (%) | MAE (mm) | KGE | POD | FAR | CSI | FBIAS |
---|---|---|---|---|---|---|---|---|
TRMM 3B42 | 0.19 | 22.23 | 4.92 | 0.15 | 0.54 | 0.46 | 0.37 | 1.00 |
CMFD | 0.60 | 2.11 | 2.81 | 0.55 | 0.91 | 0.39 | 0.57 | 1.50 |
CMADS | 0.45 | −8.55 | 3.20 | 0.44 | 0.75 | 0.33 | 0.55 | 1.12 |
Products | Average Bias of Products (mm)/ Measured Value (mm) | Maximum Overestimation (mm)/ Measured Value (mm) | Corresponding Bias | Corresponding Site | Maximum Underestimation Value (mm)/ Measured Value (mm) | Corresponding Bias | Corresponding Site |
---|---|---|---|---|---|---|---|
CMFD | 12.8/1125.4 | 327.5/751.8 | 43.56% | Yuanjiang Station | −241.5/1096.9 | 22.01% | Huili Station |
TRMM 3B42 | 43.9/1125.4 | 447.5/751.8 | 59.55% | Yuanjiang Station | −263.5/1242.4 | 21.21% | Panxian Station |
CMADS | 105.1/1125.4 | 404.4/751.8 | 53.79% | Yuanjiang Station | −463.4/1471.6 | 31.49% | Simao Station |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yang, T.; Bah, A.; Luo, Z.; Chen, G.; Xie, Y. Analysis of the Applicability of Multisource Meteorological Precipitation Data in the Yunnan-Kweichow-Plateau Region at Multiple Scales. Atmosphere 2023, 14, 701. https://doi.org/10.3390/atmos14040701
Zhang H, Yang T, Bah A, Luo Z, Chen G, Xie Y. Analysis of the Applicability of Multisource Meteorological Precipitation Data in the Yunnan-Kweichow-Plateau Region at Multiple Scales. Atmosphere. 2023; 14(4):701. https://doi.org/10.3390/atmos14040701
Chicago/Turabian StyleZhang, Hongbo, Ting Yang, Alhassane Bah, Zhumei Luo, Guohong Chen, and Yanglin Xie. 2023. "Analysis of the Applicability of Multisource Meteorological Precipitation Data in the Yunnan-Kweichow-Plateau Region at Multiple Scales" Atmosphere 14, no. 4: 701. https://doi.org/10.3390/atmos14040701
APA StyleZhang, H., Yang, T., Bah, A., Luo, Z., Chen, G., & Xie, Y. (2023). Analysis of the Applicability of Multisource Meteorological Precipitation Data in the Yunnan-Kweichow-Plateau Region at Multiple Scales. Atmosphere, 14(4), 701. https://doi.org/10.3390/atmos14040701