Prediction of the Concentration of Particulate Matter 2.5 Using Virtual Sensors Applied to Valle de Aburrá
Abstract
:1. Introduction
2. Materials and Methods
2.1. Valle de Aburrá
2.2. Data Analysis
2.2.1. Air Quality Data
2.2.2. Graphical Analysis
2.3. Identification and Prediction of PM2.5 Dynamics
2.3.1. Model Identification
2.3.2. State Estimator
2.3.3. Performance Indicators
- I.
- Integral of the Time-Weighted Absolute Error
- II.
- Integral of Absolute Error
- III.
- Integral of Squared Error
3. Results and Discussion
3.1. Analysis and Correlation of Variables
3.2. PM Prediction Models
3.2.1. State-Space Model (Model SS)
3.2.2. Kalman Filter
3.3. Validation
3.4. Performance Analysis
4. Conclusions and Future Work
4.1. Conclusions
4.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardona, E.M. El área Metropolitana del Valle de Aburrá y las Provincias. Retos de unión social y política. Reflexión Política 2019, 21, 175–189. [Google Scholar] [CrossRef]
- Universidad Eafit. Informe Anual de Calidad del Aire 2021; Universidad Eafit: Medellín, Colombia, 2021. Available online: https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2021.pdf (accessed on 15 November 2022).
- Franco, J.F.; Gidhagen, L.; Morales, R.; Behrentz, E. Towards a better understanding of urban air quality management capabilities in Latin America. Environ. Sci. Policy 2019, 102, 43–53. [Google Scholar] [CrossRef]
- Karavas, Z.; Karayannis, V.; Moustakas, K. Comparative study of air quality indices in the European Union towards adopting a common air quality index. Energy Environ. 2020, 32, 959–980. [Google Scholar] [CrossRef]
- Gillen, B.; Snowberg, E.; Yariv, L. Experimenting with Measurement Error: Techniques with Applications to the Caltech Cohort Study. J. Politi-Econ. 2019, 127, 1826–1863. [Google Scholar] [CrossRef] [Green Version]
- Hime, N.J.; Marks, G.B.; Cowie, C.T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Janabi, S.; Mohammad, M.; Al-Sultan, A. A new method for prediction of air pollution based on intelligent computation. Soft Comput. 2020, 24, 661–680. [Google Scholar] [CrossRef]
- Gogikar, P.; Tyagi, B.; Gorai, A.K. Seasonal prediction of particulate matter over the steel city of India using neural network models. Model. Earth Syst. Environ. 2019, 5, 227–243. [Google Scholar] [CrossRef]
- KGu, K.; Qiao, J.; Li, X. Highly Efficient Picture-Based Prediction of PM2.5 Concentration. IEEE Trans. Ind. Electron. 2018, 66, 3176–3184. [Google Scholar] [CrossRef]
- Yuchi, W.; Gombojav, E.; Boldbaatar, B.; Galsuren, J.; Enkhmaa, S.; Beejin, B.; Naidan, G.; Ochir, C.; Legtseg, B.; Byambaa, T.; et al. Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city. Environ. Pollut. 2019, 245, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, X.; Sun, C. Predicting PM2.5 in the Northeast China Heavy Industrial Zone: A Semi-Supervised Learning with Spatiotemporal Features. Atmosphere 2022, 13, 1744. [Google Scholar] [CrossRef]
- Nidzgorska-Lencewicz, J.; Czarnecka, M. Thermal Inversion and Particulate Matter Concentration in Wrocław in Winter Season. Atmosphere 2020, 11, 1351. [Google Scholar] [CrossRef]
- Yin, P.-Y.; Chang, R.-I.; Day, R.-F.; Lin, Y.-C.; Hu, C.-Y. Improving PM2.5 Concentration Forecast with the Identification of Temperature Inversion. Appl. Sci. 2021, 12, 71. [Google Scholar] [CrossRef]
- San Miguel, G.B. Lecciones Aprendidas Proyecto: Sistema de Alertas Tempranas de Medellin y el Valle de Aburrá-SIATA; Universidad Eafit: Antioquia, Colombia, 2016.
- Sistema de Alerta Temprana de Medellin, “SIATA.”. Available online: https://siata.gov.co/sitio_web/application/assets/img/contenido/Galeria/img_galeria_24.png (accessed on 15 November 2022).
- Alcaldía de Medellín. Plan de Acción Climatica Medellin 2020–2050; Alcaldía de Medellín: Medellín, Colombia, 2021. Available online: https://www.medellin.gov.co/es/wp-content/uploads/2021/09/PAC-MED_20210223.pdf (accessed on 15 November 2022).
- Alvarez, H.; Lamanna, R.; Vega, P.; Revollar, S. Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar. Rev. Iberoam. Automática Inf. Ind. RIAI 2009, 6, 10–20. [Google Scholar] [CrossRef]
- Verhaegen, M. Filtering and System Identification: A Least Squares Approach; Cambridge University Press: Cambridge, UK, 2007; Volume 1. [Google Scholar]
- Ljung, L. Perspectives on system identification. Annu. Rev. Control. 2010, 34, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kalman, R. On the general theory of control systems. IRE Trans. Autom. Control. 1959, 4, 110. [Google Scholar] [CrossRef]
- Isaza, J.A.; Botero, H.A.; Alvarez, H. State Estimation Using Non-uniform and Delayed Information: A Review. Int. J. Autom. Comput. 2018, 15, 125–141. [Google Scholar] [CrossRef]
- Li, X.R.; Zhao, Z. Measures of Performance for Evaluation of Estimators and Filters. In Proceedings of the Signal and Data Processing of Small Targets 2001, San Diego, CA, USA, 26 November 2001. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, S.C.; Narasimhan, S.; Jagadeesan, P.; Gopaluni, B.; Shah, S.L. Nonlinear Bayesian state estimation: A review of recent developments. Control Eng. Pract. 2012, 20, 933–953. [Google Scholar] [CrossRef]
- Allan, D.A.; Rawlings, J.B. Moving Horizon Estimation. In Handbook of Model Predictive Control; Springer: Berlin/Heidelberg, Germany, 2019; pp. 99–124. [Google Scholar] [CrossRef]
- Isaza-Hurtado, J.; Botero-Castro, H.; Alvarez, H. Robust estimation for LPV systems in the presence of non-uniform measurements. Automatica 2020, 115, 108901. [Google Scholar] [CrossRef]
Indicator | ITAE | ISE | IAE |
---|---|---|---|
January | 9.8465 | 105.4712 | 0.0279 |
April | 10.1670 | 99.6054 | 0.0313 |
June | 17.2960 | 70.8038 | 0.0467 |
Indicator | ITAE | ISE | IAE |
---|---|---|---|
January | 10.7837 | 57.6334 | 0.0311 |
April | 11.4331 | 66.5939 | 0.0323 |
June | 10.9522 | 66.1185 | 0.0310 |
Indicator | ITAE | ISE | IAE |
---|---|---|---|
January | 18.8932 | 163.6286 | 0.0465 |
April | 19.3637 | 156.8854 | 0.0571 |
June | 18.6398 | 104.0265 | 0.0453 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez, C.M.; Guerra, M.L.; Acevedo, E.R.; Isaza, J.A. Prediction of the Concentration of Particulate Matter 2.5 Using Virtual Sensors Applied to Valle de Aburrá. Atmosphere 2023, 14, 614. https://doi.org/10.3390/atmos14040614
Hernandez CM, Guerra ML, Acevedo ER, Isaza JA. Prediction of the Concentration of Particulate Matter 2.5 Using Virtual Sensors Applied to Valle de Aburrá. Atmosphere. 2023; 14(4):614. https://doi.org/10.3390/atmos14040614
Chicago/Turabian StyleHernandez, Cristian M., Miryam L. Guerra, Elizabeth Rodriguez Acevedo, and Jhon A. Isaza. 2023. "Prediction of the Concentration of Particulate Matter 2.5 Using Virtual Sensors Applied to Valle de Aburrá" Atmosphere 14, no. 4: 614. https://doi.org/10.3390/atmos14040614
APA StyleHernandez, C. M., Guerra, M. L., Acevedo, E. R., & Isaza, J. A. (2023). Prediction of the Concentration of Particulate Matter 2.5 Using Virtual Sensors Applied to Valle de Aburrá. Atmosphere, 14(4), 614. https://doi.org/10.3390/atmos14040614