Study on Lowering the Group 1 Protease Allergens from House Dust Mites by Exposing to Todomatsu Oil Atmosphere
Abstract
:1. Introduction
2. Methods
2.1. House Dust Sampling
2.2. Extraction of House Dust Mite Allergens
2.3. Evaluation of Allergen Content Using ELISA Assay
2.4. Determination of Allergen Level Employing SDS-PAGE
2.5. Assessment of Allergens and Ingredients-of-Todomatsu Oil Interactions Utilizing Molecular Docking Analysis
2.6. Statistical Analysis
3. Results
3.1. Significantly Lowered Levels of Allergens Der f 1 and Der p 1 in the Todomatsu Oil Atmosphere
3.2. Higher Decline Rate with the Increasing Todomatsu Oil Concentration
3.3. Interactions among Ingredients-of-Todomatsu Oil and Allergens Der f 1 and Der p 1
3.4. Functional Sites on Allergens Der f 1 and Der p 1 Bound by Todomatsu Oil
3.5. Inhibition Effectiveness of Each Ingredients-of-Todomatsu Oil on Allergens Der f 1 and Der p 1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ingredients of Todomatsu Oil | 3D Complex Representation | 2D Complex Representation | Docking Amino Acid Residues | |||
---|---|---|---|---|---|---|
Der f 1 | Der p 1 | Der f 1 | Der p 1 | Der f 1 | Der p 1 | |
3-carene | AHI: AlA150 TYR154 ILE160 | AHI: ILE158 TYR185 TYR203 | ||||
borneol | AHI: ALA150 ILE160 HB: HIS162 | AHI: ALA180 TYR185 HB: GLY155 PS: TYR203 | ||||
tricyclene | AHI: ILE142 ALA172 | AHI: ALA180 TYR185 TYR203 PS: TYR185 | ||||
β-myrcene | AHI: CYS35 ILE77 ILE142 TYR170 ALA172 TYR217 PS: TYR170 | AHI: ALA149 TYR153 ILE159 MET211 | ||||
β-pinene | AHI: ALA150 TYR154 ILE160 HIS162 | AHI: ALA149 ILE159 | ||||
α-pinene | AHI: ALA150 TYR154 ILE160 HIS162 | AHI: ALA149 TYR153 ILE159 | ||||
camphene | AHI: CYS35 ILE77 ILE142 ALA172 | AHI: ALA180 TYR185 TYR203 |
Ingredients of Todomatsu Oil | Docking Energy (ΔG, Kcal/mol) | Inhibition Constant (Ki, μM) | Ingredients of Todomatsu Oil | Docking Energy (ΔG, Kcal/mol) | Inhibition Constant (Ki, μM) | ||||
---|---|---|---|---|---|---|---|---|---|
Der f 1 | Der p 1 | Der f 1 | Der p 1 | Der f 1 | Der p 1 | Der f 1 | Der p 1 | ||
3-carene | −5.5 | −5.3 | 92.91 | 130.22 | limonene | −5.8 | −5.7 | 55.99 | 66.29 |
α-terpinolene | −6.0 | −6.0 | 39.95 | 39.95 | β-pinene | −5.4 | −5.1 | 109.99 | 182.51 |
borneol | −5.1 | −4.9 | 182.51 | 255.80 | β-phellandrene | −5.9 | −5.7 | 47.30 | 66.29 |
β-maaliene | −6.4 | −6.1 | 20.34 | 33.74 | α-pinene | −5.6 | −5.2 | 78.48 | 154.16 |
tricyclene | −5.1 | −4.9 | 182.51 | 255.80 | camphene | −5.4 | −4.9 | 109.99 | 255.80 |
β-myrcene | −5.1 | −5.2 | 182.51 | 154.16 | bornyl acetate | −6.1 | −5.7 | 33.74 | 66.29 |
References
- Aggarwal, P.; Senthilkumaran, S. Dust Mite Allergy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Yasuda, Y.; Nagano, T.; Kobayashi, K.; Nishimura, Y. Group 2 Innate Lymphoid Cells and the House Dust Mite-Induced Asthma Mouse Model. Cells 2020, 9, 1178. [Google Scholar] [CrossRef]
- Calderón, M.A.; Linneberg, A.; Kleine-Tebbe, J.; De Blay, F.; De Rojas, D.H.F.; Virchow, J.C.; Demoly, P. Respiratory Allergy Caused by House Dust Mites: What Do We Really Know? J. Allergy Clin. Immunol. 2015, 136, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Colloff, M.J. Dust Mites; Springer, CSIRO Publishing: Dordrecht, The Netherlands, 2009; Available online: http://www.publish.csiro.au/pid/6022.htm (accessed on 8 December 2022).
- Mumcuoglu, K.Y.; Taylan-Özkan, A. Preventive Measures to Avoid Contact with House Dust Mites and Their Allergens. Acarol. Stud. 2020, 2, 1–6. Available online: https://dergipark.org.tr/en/pub/acarolstud/issue/52206/659923 (accessed on 8 February 2023).
- Pomés, A.; Davies, J.M.; Gadermaier, G.; Hilger, C.; Holzhauser, T.; Lidholm, J.; Lopata, A.L.; Mueller, G.A.; Nandy, A.; Radauer, C.; et al. WHO/IUIS Allergen Nomenclature: Providing a Common Language. Mol. Immunol. 2018, 100, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Sudharson, S.; Kalic, T.; Hafner, C.; Breiteneder, H. Newly Defined Allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019–03/2021. Allergy 2021, 76, 3359–3373. [Google Scholar] [CrossRef]
- Chruszcz, M.; Chapman, M.D.; Vailes, L.D.; Stura, E.A.; Saint-Remy, J.M.; Minor, W.; Pomés, A. Crystal Structures of Mite Allergens Der f 1 and Der p 1 Reveal Differences in Surface-Exposed Residues that May Influence Antibody Binding. J. Mol. Biol. 2009, 386, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Heymann, P.W.; Chapman, M.D.; Aalberse, R.C.; Fox, J.W.; Platts-Mills, T.A.E. Antigenic and Structural Analysis of Group II Allergens (Der f II and Der p II) from House Dust Mites (Dermatophagoides Spp.). J. Allergy Clin. Immunol. 1989, 83, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.D.; Platts-Mills, T.A. Purication and characterization of the major allergen from Dermatophagoides pteronyssinus-antigen P1. J. Immunol. 1980, 125, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Chruszcz, M.; Pomés, A.; Glesner, J.; Vailes, L.D.; Osinski, T.; Porebski, P.J.; Majorek, K.A.; Heymann, P.W.; Platts-Mills, T.A.E.; Minor, W.; et al. Molecular Determinants for Antibody Binding on Group 1 House Dust Mite Allergens. J. Biol. Chem. 2012, 287, 7388–7398. [Google Scholar] [CrossRef] [Green Version]
- Jacquet, A.; Robinson, C. Proteolytic, Lipidergic and Polysaccharide Molecular Recognition Shape Innate Responses to House Dust Mite Allergens. Allergy 2020, 75, 33–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquet, A. Characterization of Innate Immune Responses to House Dust Mite Allergens: Pitfalls and Limitations. Front. Allergy 2021, 2, 662378. [Google Scholar] [CrossRef]
- Heijink, I.H.; Kuchibhotla, V.N.S.; Roffel, M.P.; Maes, T.; Knight, D.A.; Sayers, I.; Nawijn, M.C. Epithelial Cell Dysfunction, a Major Driver of Asthma Development. Allergy 2020, 75, 1898–1913. [Google Scholar] [CrossRef]
- Wan, H.; Winton, H.L.; Soeller, C.; Tovey, E.R.; Gruenert, D.C.; Thompson, P.J.; Stewart, G.A.; Taylor, G.W.; Garrod, D.R.; Cannell, M.B.; et al. Der p 1 Facilitates Transepithelial Allergen Delivery by Disruption of Tight Junctions. J. Clin. Investig. 1999, 104, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derewenda, U.; Li, J.; Derewenda, Z.; Dauter, Z.; Mueller, G.A.; Rule, G.S.; Benjamin, D.C. The crystal structure of a major dust mite allergen Der p 2, and its biological implications. J. Mol. Biol. 2002, 318, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trompette, A.; Divanovic, S.; Visintin, A.; Blanchard, C.; Hegde, R.S.; Madan, R.; Thorne, P.S.; Wills-Karp, M.; Gioannini, T.L.; Weiss, J.P.; et al. Allergenicity Resulting from Functional Mimicry of a Toll-Like Receptor Complex Protein. Nature 2009, 457, 585–588. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, J.; Robinson, C. Cellular and Molecular Events in the Airway Epithelium Defining the Interaction between House Dust Mite Group 1 Allergens and Innate Defences. Int. J. Mol. Sci. 2018, 19, 3549. [Google Scholar] [CrossRef] [Green Version]
- Guillott, L.; Medjane, S.; Le-Barillec, K.; Balloy, V.; Danel, C.; Chignard, M.; Si-Tahar, M. Response of Human Pulmonary Epithelial Cells to Lipopolysaccharide Involves Toll-Like Receptor 4 (TLR4)-Dependent Signaling Pathways: Evidence for an Intracellular Compartmentalization of TLR4. J. Biol. Chem. 2004, 279, 2712–2718. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.P.; Kline, J.N.; Penisten, A.; Apicella, M.A.; Gioannini, T.L.; Weiss, J.; McCray, P.B. Endotoxin Responsiveness of Human Airway Epithelia Is Limited by Low Expression of MD-2. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2004, 287, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Muir, A.; Soong, G.; Sokol, S.; Reddy, B.; Gomez, M.I.; Van Heeckeren, A.; Prince, A. Toll-Like Receptors in Normal and Cystic Fibrosis Airway Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2004, 30, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, J.; Zuo, J.; Newton, G.K.; Stewart, M.R.; Perrior, T.R.; Garrod, D.R.; Robinson, C. Allergen Delivery Inhibitors: Characterisation of Potent and Selective Inhibitors of Der p 1 and Their Attenuation of Airway Responses to House Dust Mite Allergens. Int. J. Mol. Sci. 2018, 19, 3166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, J.; Allen-Philbey, K.; Baruhupolage, C.P.; Tachie-Menson, T.; Mangat, S.C.; Garrod, D.R.; Robinson, C. Innate Generation of Thrombin and Intracellular Oxidants in Airway Epithelium by Allergen Der p 1. J. Allergy Clin. Immunol. 2016, 138, 1224–1227. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, J.; Tachie-Menson, T.; Shukla, N.; Garrod, D.R.; Robinson, C. Allergen-Dependent Oxidant Formation Requires Purinoceptor Activation of ADAM 10 and Prothrombin. J. Allergy Clin. Immunol. 2017, 139, 2023–2026.e9. [Google Scholar] [CrossRef] [Green Version]
- Jung, J. Insecticidal Effect against House Dust Mite Using Ethanol Extract of Theobroma Cacao L. Ann. Rom. Soc. Cell Biol. 2021, 25, 786–791. Available online: https://www.annalsofrscb.ro/index.php/journal/article/view/171 (accessed on 29 August 2021).
- Abidin, S.Z.; Ming, H.T. Effect of a Commercial Air Ionizer on Dust Mites Dermatophagoides Pteronyssinus and Dermatophagoides Farinae (Acari: Pyroglyphidae) in the Laboratory. Asian Pac. J. Trop. Biomed. 2012, 2, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.S.; Foden, P.; Sumner, H.; Shepley, E.; Custovic, A.; Simpson, A. Preventing Severe Asthma Exacerbations in Children a Randomized Trial of Mite-Impermeable Bedcovers. Am. J. Respir. Crit. Care Med. 2017, 196, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Halken, S.; Høst, A.; Niklassen, U.; Hansen, L.G.; Nielsen, F.; Pedersen, S.; Østerballe, O.; Veggerby, C.; Poulsen, L.K. Effect of Mattress and Pillow Encasings on Children with Asthma and House Dust Mite Allergy. J. Allergy Clin. Immunol. 2003, 111, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terreehorst, I.; Hak, E.; Oosting, A.J.; Tempels-Pavlica, Z.; de Monchy, J.G.R.; Bruijnzeel-Koomen, C.A.F.M.; Aalberse, R.C.; van Wijk, R.G. Evaluation of Impermeable Covers for Bedding in Patients with Allergic Rhinitis. N. Engl. J. Med. 2003, 349, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Tsurikisawa, N.; Saito, A.; Oshikata, C.; Nakazawa, T.; Yasueda, H.; Akiyama, K. Encasing Bedding in Covers Made of Microfine Fibers Reduces Exposure to House Mite Allergens and Improves Disease Management in Adult Atopic Asthmatics. Allergy Asthma Clin. Immunol. 2013, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Rijssenbeek-Nouwens, L.H.M.; Oosting, A.J.; De Bruin-Weller, M.S.; Bregman, I.; De Monchy, J.G.R.; Postma, D.S. Clinical Evaluation of the Effect of Anti-Allergic Mattress Covers in Patients with Moderate to Severe Asthma and House Dust Mite Allergy: A Randomised Double Blind Placebo Controlled Study. Thorax 2002, 57, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, R.B.; Durrell, B.; Bishop, S.; Curbishley, L.; Woodcock, A.; Custovic, A. High-Efficiency Vacuum Cleaners Increase Personal Mite Allergen Exposure, but Only Slightly. Allergy 2006, 61, 119–123. [Google Scholar] [CrossRef]
- Maloney, J.; Sicherer, S.H. Results of a Home-Based Environmental Intervention among Urban Children with Asthma. Pediatrics 2005, 116, 543. [Google Scholar] [CrossRef] [Green Version]
- Antonicelli, L.; Bilò, M.B.; Pucci, S.; Schou, C.; Bonifazi, F. Efficacy of an Air-Cleaning Device Equipped with a High Efficiency Particulate Air Filter in House Dust Mite Respiratory Allergy. Allergy 1991, 46, 594–600. [Google Scholar] [CrossRef]
- Reisman, R.E.; Mauriello, P.M.; Davis, G.B.; Georgitis, J.W.; DeMasi, J.M. A Double-Blind Study of the Effectiveness of a High-Efficiency Particulate Air (HEPA) Filter in the Treatment of Patients with Perennial Allergic Rhinitis and Asthma. J. Allergy Clin. Immunol. 1990, 85, 1050–1057. [Google Scholar] [CrossRef]
- Arlian, L.G.; Neal, J.S.; Vyszenski-Moher, D.A.L. Reducing Relative Humidity to Control the House Dust Mite Dermatophagoides Farinae. J. Allergy Clin. Immunol. 1999, 104, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.L.; Rose, G.; Diduch, K.B.; Domson, P.; Chapman, M.D.; Heymann, P.W.; Platts-Mills, T.A.E. Benzyl Benzoate Moist Powder: Investigation of Acarical Activity in Cultures and Reduction of Dust Mite Allergens in Carpets. J. Allergy Clin. Immunol. 1992, 89, 536–545. [Google Scholar] [CrossRef]
- Lee, I.; Park, J. Insecticidal Effect of Dermatoohagoides Pteronyssinus Using Ginkgo Biloba Leaves Extracts. KSBB J. 2007, 22, 58–61. [Google Scholar]
- Zeytun, E.; Doğan, S.; Özçiçek, F.; Ünver, E. Sensitivity to House Dust Mites Allergens in Patients with Allergic Asthma in Erzincan Province, Turkey. Turk. Parazitol. Derg. 2017, 41, 34–41. [Google Scholar] [CrossRef]
- Zheng, Y.W.; Lai, X.X.; Zhao, D.Y.; Zhang, C.Q.; Chen, J.J.; Zhang, L.; Wei, Q.Y.; Chen, S.; Liu, E.M.; Norback, D.; et al. Indoor Allergen Levels and Household Distributions in Nine Cities across China. Biomed. Environ. Sci. 2015, 28, 709–717. [Google Scholar] [CrossRef]
- Platts-Mills, T.A.E.; Vervloet, D.; Thomas, W.R.; Aalberse, R.C.; Chapman, M.D. Indoor Allergens and Asthma: Report of the Third International Workshop. J. Allergy Clin. Immunol. 1997, 100, S2–S24. [Google Scholar] [CrossRef]
- Platts-Mills, T.A.E.; De Weck, A. Dust Mite Allergens and Asthma—A Worldwide Problem. Bull. WHO 1989, 66, 769–780. [Google Scholar]
- Sun, L.; Miller, J.D.; Van Ryswyk, K.; Wheeler, A.J.; Héroux, M.E.; Goldberg, M.S.; Mallach, G. Household Determinants of Biocontaminant Exposures in Canadian Homes. Indoor Air 2022, 32, e12933. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bemt, L.; Van Knapen, L.; De Vries, M.P.; Jansen, M.; Cloosterman, S.; Van Schayck, C.P. Clinical Effectiveness of a Mite Allergen-Impermeable Bed-Covering System in Asthmatic Mite-Sensitive Patients. J. Allergy Clin. Immunol. 2004, 114, 858–862. [Google Scholar] [CrossRef]
- Custovic, A.; Taggart, S.C.O.; Woodcock, A. House Dust Mite and Cat Allergen in Different Indoor Environments. Clin. Exp. Allergy 1994, 24, 1164–1168. [Google Scholar] [CrossRef]
- Insung, A.; Pumnuan, J.; Mahakittikun, V.; Wangapai, T. Effectiveness of Essential Oils of Medicinal Plants at Reducing the Amounts of Allergen Produced by the European House Dust Mite, Dermatophagoides Pteronyssinus (Trouessart). J. Acarol. Soc. Jpn. 2016, 25, S179–S184. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Enyoh, C.E.; Wang, Q.; Lu, S.; Zhang, W.; Xiao, K.; Zhou, S.; Kaneko, T.; Seguchi, A.; Wang, W.; et al. Novel Approaches for Inhibiting the Indoor Allergen Der f 2 Excreted from House Dust Mites by Todomatsu Oil Produced from Woodland Residues. Int. J. Environ. Res. Public Health 2022, 19, 10881. [Google Scholar] [CrossRef]
- Chapman, M.D.; Heymann, P.W.; Platts-Mills, T.A. Epitope Mapping of Two Major Inhalant Allergens, Der p I and Der f I, from Mites of the Genus Dermatophagoides. J. Immunol. 1987, 139, 1479–1484. [Google Scholar] [CrossRef]
- De Halleux, S.; Stura, E.; VanderElst, L.; Carlier, V.; Jacquemin, M.; Saint-Remy, J.M. Three-Dimensional Structure and IgE-Binding Properties of Mature Fully Active Der p 1, a Clinically Relevant Major Allergen. J. Allergy Clin. Immunol. 2006, 117, 571–576. [Google Scholar] [CrossRef]
- Meno, K.; Thorsted, P.B.; Ipsen, H.; Kristensen, O.; Larsen, J.N.; Spangfort, M.D.; Gajhede, M.; Lund, K. The Crystal Structure of Recombinant ProDer p 1, a Major House Dust Mite Proteolytic Allergen. J. Immunol. 2005, 175, 3835–3845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Chruszcz, M.; Lasota, P.; Lebioda, L.; Minor, W. Data Mining of Metal Ion Environments Present in Protein Structures. J. Inorg. Biochem. 2008, 102, 1765–1776. [Google Scholar] [CrossRef] [Green Version]
- Enyoh, C.E.; Maduka, T.; Wang, Q.; Islam, M.R. In Silico Screening of Active Compounds in Garri for the Inhibition of Key Enzymes Linked to Diabetes Mellitus. ACS Food Sci. Technol. 2022, 2, 1597–1611. [Google Scholar] [CrossRef]
- Shivashankar, S.; Sangeetha, M.K. The Natural Ligand for Metalloproteinase—A Multifaceted Drug Target. Appl. Biochem. Biotechnol. 2022, 194, 1716–1739. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Wang, Q.; Ovuoraye, P.E.; Maduka, T.O. Toxicity Evaluation of Microplastics to Aquatic Organisms through Molecular Simulations and Fractional Factorial Designs. Chemosphere 2022, 308, 136342. [Google Scholar] [CrossRef] [PubMed]
- Dabbaghzadeh, A.; Ghaffari, J.; Feridoni, M.; Alipour, A. House Dust Mite Allergen Levels of Der p1 and Der f1 in Houses of Asthmatic Children. J. Pediatr. Rev. 2020, 8, 267–274. [Google Scholar] [CrossRef]
- Fereidouni, M.; Fereidouni, F.; Hadian, M.; Hasankiadeh, S.N.; Mazandarani, M.; Ziaee, M. Evaluation of the Level of House Dust Mite Allergens, Der p 1 and Der f 1 in Iranian Homes, a Nationwide Study. Allergol. Immunopathol. 2013, 41, 381–386. [Google Scholar] [CrossRef]
- Shafique, R.H.; Akhter, S.; Abbas, S.; Ismail, M. Sensitivity to House Dust Mite Allergens and Prevalence of Allergy-Causing House Dust Mite Species in Pothwar, Pakistan. Exp. Appl. Acarol. 2018, 74, 415–426. [Google Scholar] [CrossRef]
- Cabanillas, B.; Pedrosa, M.M.; Rodríguez, J.; González, Á.; Muzquiz, M.; Cuadrado, C.; Crespo, J.F.; Burbano, C. Effects of Enzymatic Hydrolysis on Lentil Allergenicity. Mol. Nutr. Food Res. 2010, 54, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Qu, X.; Yang, N.; Ahmed, I. The Conformational Structural Change of β-Lactoglobulin via Acrolein Treatment Reduced the Allergenicity. Food Chem. X 2021, 10, 100120. [Google Scholar] [CrossRef]
- Zhou, S.; Zhao, H.; Peng, J.; Hong, Q.; Xiao, K.; Shang, Y.; Lu, S.; Zhang, W.; Wu, M.; Li, S.; et al. Size Distribution of Platanus Acerifolia Allergen 3 (Pla A3) in Shanghai Ambient Size-Resolved Particles and Its Allergenic Effects. Atmos. Environ. 2019, 198, 324–334. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Duru, C.E.; Umar, H.I.U.; Duru, I.A.; Enenebeaku, U.E.; Ngozi-Olehi, L.C.; Enyoh, C.E. Blocking the Interactions between Human Ace2 and Coronavirus Spike Glycoprotein by Selected Drugs: A Computational Perspective. Environ. Health Toxicol. 2021, 36, e2021010. [Google Scholar] [CrossRef]
- Duru, C.E.; Duru, I.A.; Enyoh, C.E. In Silico Binding Affinity Analysis of Microplastic Compounds on PET Hydrolase Enzyme Target of Ideonella Sakaiensis. Bull. Natl. Res. Cent. 2021, 45, 104. [Google Scholar] [CrossRef]
- Tatsuro, O.; Naoyuki, M.; Toshihiko, K.; Yuichi, T.M.E. Efficient Extraction of Essential Oil from Woody Materials Using Vaccume Microwave Assisted Steam Distillation. Aroma Res. 2010, 11, 48–55. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. Ligplot: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Chandar, N.B.; Lo, R.; Ganguly, B. Effective Docking Program for Designing Reactivator for Treating Organophosphorus Inhibited AChE. JSM Chem. 2016, 4, 1032. [Google Scholar]
- Iman, M.; Saadabadi, A.; Davood, A. Molecular Docking Analysis and Molecular Dynamics Simulation Study of Ameltolide Analogous as a Sodium Channel Blocker. Turk. J. Chem. 2015, 39, 306–316. [Google Scholar] [CrossRef]
- Bhagavan, N.V.; Ha, C.E. Chapter 4—Three-Dimensional Structure of Proteins and Disorders of Protein Misfolding. In Essentials of Medical Biochemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 31–51. [Google Scholar] [CrossRef]
- Baldwin, R.L.; Rose, G.D. How the Hydrophobic Factor Drives Protein Folding. Proc. Natl. Acad. Sci. USA 2016, 113, 12462–12466. [Google Scholar] [CrossRef] [Green Version]
- Brandon, C.; Tooze, J. Introduction to Protein Structure, 2nd ed.; Garland Publishing: New York, NY, USA; London, UK, 1991. [Google Scholar]
- Dilworth, R.J.; Chua, K.Y.; Thomas, W.R. Sequence Analysis of CDNA Coding for a Major House Dust Mite Allergen, Der f I. Clin. Exp. Allergy 1991, 21, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Fabian, P.; Stapor, K.; Konieczny, L.; Roterman, I. Structure of the Hydrophobic Core Determines the 3d Protein Structure—Verification by Single Mutation Proteins. Biomolecules 2020, 10, 767. [Google Scholar] [CrossRef] [PubMed]
- Mellor, G.W.; Thomas, E.W.; Topham, M.; Brocklehurst, K. Ionization Characteristics of the Cys-25/His-159 Interactive System and of the Modulatory Group of Papain: Resolution of Ambiguity by Electronic Perturbation of the Quasi-2-Mercaptopyridine Leaving Group in a New Pyrimidyl Disulphide Reactivity Probe. Biochem. J. 1993, 296, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Dardenne, L.E.; Werneck, A.S.; De Oliveira Neto, M.; Bisch, P.M. Electrostatic Properties in the Catalytic Site of Papain: A Possible Regulatory Mechanism for the Reactivity of the Ion Pair. Proteins Struct. Funct. Bioinform. 2003, 52, 236–253. [Google Scholar] [CrossRef] [PubMed]
Ingredients of Todomatsu Oil (Relative Proportion) | PubChem CID | Chemical Formula | Chemical Structure | Ingredients of Todomatsu Oil (Relative Proportion) | PubChem CID | Chemical Formula | Chemical Structure |
---|---|---|---|---|---|---|---|
3-carene (0.50%) | 26049 | C10H16 | limonene (5.75%) | 22311 | C10H16 | ||
α-terpinolene (0.95%) | 11463 | C10H16 | β-pinene (7.55%) | 14896 | C10H16 | ||
borneol (1.00%) | 64685 | C10H18O | β-phellandrene (12.05%) | 11142 | C10H16 | ||
β-maaliene (1.25%) | 101596917 | C15H24 | α-pinene (18.25%) | 6654 | C10H16 | ||
tricyclene (2.25%) | 79035 | C10H16 | camphene (20.25%) | 6616 | C10H16 | ||
β-myrcene (4.45%) | 31253 | C10H16 | bornyl acetate (25.75%) | 6448 | C12H20O2 |
Group 1 Allergens | PDB ID | 3D structure | Enzymatic Activity | Organism | Mutations |
---|---|---|---|---|---|
Der f 1 | 5vpk | Cysteine protease | Dermatophagoides farinae | No | |
Der p 1 | 5vph | Cysteine protease | Dermatophagoides pteronyssinus | No |
Ingredients of Todomatsu Oil | 3D Complex Representation | 2D Complex Representation | Docking Amino Acid Residues | |||
---|---|---|---|---|---|---|
Der f 1 | Der p 1 | Der f 1 | Der p 1 | Der f 1 | Der p 1 | |
β-maaliene | AHI: CYS35 ILE142 ALA172 | AHI: ALA149 ILE159 | ||||
bornyl acetate | AHI: ALA150 ILE160 CHB: ASP163 | AHI: ALA149 ILE159 CHB: ASP162 | ||||
α-terpinolene | AHI: ALA150 PHE151 ILE160 MET212 PS: HIS162 | AHI: ALA149 ILE159 | ||||
β-phellandrene | AHI: ALA150 TYR154 ILE160 MET212 | AHI: ALA149 PHE150 TYR153 ILE159 MET211 | ||||
limonene | AHI: ALA150 ILE160 MET212 | AHI: ALA149 PHE150 ILE159 MET211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Xiao, K.; Wang, W.; Lu, S.; Wang, Q. Study on Lowering the Group 1 Protease Allergens from House Dust Mites by Exposing to Todomatsu Oil Atmosphere. Atmosphere 2023, 14, 548. https://doi.org/10.3390/atmos14030548
Lin Y, Xiao K, Wang W, Lu S, Wang Q. Study on Lowering the Group 1 Protease Allergens from House Dust Mites by Exposing to Todomatsu Oil Atmosphere. Atmosphere. 2023; 14(3):548. https://doi.org/10.3390/atmos14030548
Chicago/Turabian StyleLin, Yichun, Kai Xiao, Weiqian Wang, Senlin Lu, and Qingyue Wang. 2023. "Study on Lowering the Group 1 Protease Allergens from House Dust Mites by Exposing to Todomatsu Oil Atmosphere" Atmosphere 14, no. 3: 548. https://doi.org/10.3390/atmos14030548
APA StyleLin, Y., Xiao, K., Wang, W., Lu, S., & Wang, Q. (2023). Study on Lowering the Group 1 Protease Allergens from House Dust Mites by Exposing to Todomatsu Oil Atmosphere. Atmosphere, 14(3), 548. https://doi.org/10.3390/atmos14030548