Effects of Microphysics Parameterizations on Forecasting a Severe Hailstorm of 30 April 2021 in Eastern China
Abstract
:1. Introduction
2. Case Overview
2.1. Synoptic Environment
2.2. Mesoscale Convective Systems Observed by Satellite and Radar
3. Model Experiments and Evaluation Methods
3.1. Model Configuration and Experimental Design
3.2. Maximum Estimated Size of Hail
3.3. Fractions Skill Scores for Hail Prediction
3.4. Differential Reflectivity
3.5. Severe Convection Environmental Indices
4. Simulation Results and Evaluation
4.1. Comparison of Model Simulated Composite Reflectivity
4.2. Comparison of Model Simulated MESH and FSS Scores
4.3. Comparison of Model Simulated Differential Reflectivity
5. Discussion
5.1. Vertical Distributions of Cloud Hydrometeors’ Mixing Ratio
5.2. Dynamical Structures of Hailstorm
5.3. Convective Environmental Indices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhang, Q.H.; Ni, X.; Zhang, F.Q. Decreasing trend in severe weather occurrence over China during the past 50 years. Sci. Rep. 2017, 7, 43210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.X.; Zhang, Q.H.; Wang, Y.Q. Climatology of Hail in China: 1961–2005. J. Appl. Meteorol. Climatol. 2008, 47, 795–804. [Google Scholar] [CrossRef]
- Li, X.F.; Zhang, Q.H.; Zou, T.; Lin, J.P.; Kong, H.; Ren, Z.H. Climatology of Hail Frequency and Size in China, 1980–2015. J. Appl. Meteorol. Climatol. 2018, 57, 875–887. [Google Scholar] [CrossRef]
- Ni, X.; Muehlbauer, A.; Allen, J.T.; Zhang, Q.; Fan, J. A Climatology and Extreme Value Analysis of Large Hail in China. Mon. Weather Rev. 2020, 148, 1431–1447. [Google Scholar] [CrossRef]
- Witt, A.; Eilts, M.D.; Stumpf, G.J.; Johnson, J.T.; Mitchell, E.D.; Thomas, K.W. An enhanced hail detection algorithm for the WSR-88D. Weather Forecast. 1998, 13, 286–303. [Google Scholar] [CrossRef]
- Bringi, V.N.; Seliga, T.A.; Aydin, K. Hail detection with a differential reflectivity radar. Science 1984, 225, 1145–1147. [Google Scholar] [CrossRef]
- Herzegh, P.H.; Jameson, A.R. Observing precipitation through dual-polarization radar measurements. Bull. Am. Meteorol. Soc. 1992, 73, 1365–1374. [Google Scholar] [CrossRef]
- Jung, Y.S.; Zhang, G.F.; Xue, M. Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Weather Rev. 2008, 136, 2228–2245. [Google Scholar] [CrossRef]
- Jung, Y.S.; Xue, M.; Zhang, G.F. Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme. J. Appl. Meteorol. Climatol. 2010, 49, 146–163. [Google Scholar] [CrossRef]
- Sun, M.; Dai, J.H. Convection-Allowing Ensemble Forecasts of Intense Rainfall and Hail:Case Study. Meteorol. Mon. 2019, 45, 1501–1516. [Google Scholar] [CrossRef]
- Liu, H.P.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Zhang, P.F. Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications. J. Appl. Meteorol. Climatol. 2013, 52, 2871–2886. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, H.; Wang, M.J.; Lee, W.C.; Chen, G.; Wen, L.; Wen, J.; Zhang, G.F.; Xue, M.; Yang, Z.W.; et al. Recent Progress in Dual-Polarization Radar Research and Applications in China. Adv. Atmos. Sci. 2019, 36, 961–974. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tolle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Qiao, F.X.; Liang, X.Z.; Zhu, Y.T.; Zhang, H.; Li, Q.; Ding, Y. Role of convection representation across the gray zone in forecasting warm season extreme precipitation over Shanghai from two typical cases. Atmos. Res. 2021, 253, 105370. [Google Scholar] [CrossRef]
- Luo, L.P.; Xue, M.; Zhu, K.F.; Zhou, B.W. Explicit prediction of hail using multimoment microphysics schemes for a hailstorm of 19 March 2014 in eastern China. J. Geophys. Res. Atmos. 2017, 122, 7560–7581. [Google Scholar] [CrossRef]
- Luo, L.P.; Xue, M.; Zhu, K.F.; Zhou, B.W. Explicit Prediction of Hail in a Long-Lasting Multicellular Convective System in Eastern China Using Multimoment Microphysics Schemes. J. Atmos. Sci. 2018, 75, 3115–3137. [Google Scholar] [CrossRef]
- Bryan, G.H.; Morrison, H. Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics. Mon. Weather Rev. 2012, 140, 202–225. [Google Scholar] [CrossRef]
- Liang, X.Z.; Li, Q.; Mei, H.X.; Zeng, M.J. Multi-Grid Nesting Ability to Represent Convections Across the Gray Zone. J. Adv. Model. Earth Syst. 2019, 11, 4352–4376. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR/TN-475+STR; NCAR: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci. 2006, 63, 3137–3159. [Google Scholar] [CrossRef]
- Yin, L.; Ping, F.; Mao, J.H. Impact of cloud microphysical processes on the simulation of a hailstorm in East China. Atmos. Res. 2019, 219, 36–56. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Craven, J.P.; Brooks, H. Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig. 2004, 28, 13–24. [Google Scholar]
- Helmus, J.J.; Collis, S.M. The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. J. Open Res. Softw. 2016, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Dudhia, J.; Gonzalez-Rouco, J.F.; Navarro, J.; Montavez, J.P.; Garcia-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004. [Google Scholar]
- Shin, H.H.; Hong, S.Y. Representation of the Subgrid-Scale Turbulent Transport in Convective Boundary Layers at Gray-Zone Resolutions. Mon. Weather Rev. 2015, 143, 250–271. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.-O.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Tao, W.K.; Simpson, J.; McCumber, M. An ice-water saturation adjustment. Mon. Weather Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef]
- Tao, W.K.; Wu, D.; Lang, S.; Chern, J.D.; Peters-Lidard, C.; Fridlind, A.; Matsui, T. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos. 2016, 121, 1278–1305. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci. 2005, 62, 3051–3064. [Google Scholar] [CrossRef] [Green Version]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci. 2005, 62, 3065–3081. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.T.; Qiao, F.X.; Liu, Y.J.; Liang, X.Z.; Liu, Q.Y.; Wang, R.; Zhang, H. The impacts of multi-physics parameterization on forecasting heavy rainfall induced by weak landfalling Typhoon Rumbia (2018). Atmos. Res. 2022, 265, 105883. [Google Scholar] [CrossRef]
- Murillo, E.M.; Homeyer, C.R. Severe hail fall and hailstorm detection using remote sensing observations. Meteorol. Climatol. 2019, 58, 947–970, Erratum in J. Appl. Meteorol. Climatol. 2021, 60, 423. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.M.; Lean, H.W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Zheng, Y.; Zhang, X. FSS-based Evaluation on Convective Weather Forecasts in North China from High Resolution Models. J. Appl. Meteorol. Sci. 2018, 29, 513–523. [Google Scholar] [CrossRef]
- Ladwig, W. wrf-python, version 1.3.4.1; UCAR/NCAR: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Zhu, K.F.; Xue, M.; Zhou, B.W.; Zhao, K.; Sun, Z.Q.; Fu, P.L.; Zheng, Y.G.; Zhang, X.L.; Meng, Q.T. Evaluation of Real-Time Convection-Permitting Precipitation Forecasts in China During the 2013-2014 Summer Season. J. Geophys. Res. Atmos. 2018, 123, 1037–1064. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J. Case study of a hailstorm in Colorado. IV. Graupel and hail growth mechanisms deduced through particle trajectory calculations. J. Atmos. Sci. 1983, 40, 1482–1509. [Google Scholar] [CrossRef]
- May, R.M.; Goebbert, K.H.; Thielen, J.E.; Leeman, J.R.; Camron, M.D.; Bruick, Z.; Bruning, E.C.; Manser, R.P.; Arms, S.C.; Marsh, P.T. MetPy: A Meteorological Python Library for Data Analysis and Visualization. Bull. Am. Meteorol. Soc. 2022, 103, E2273–E2284. [Google Scholar] [CrossRef]
Name | Full Names | Units |
---|---|---|
CAPE | Convective Available Potential Energy | J/kg |
CIN | Convective Inhibition | J/kg |
K | K Index | °C |
TT | Total Totals | °C |
LI | Lifted Index | °C |
SWEAT | Severe Weather Threat Index | / |
WS_6 | 0–6 km Wind Shear | m/s |
WBT_0 | 0 °C Wet Bulb Temperature Height | m |
WBT_N20 | −20 °C Wet Bulb Temperature Height | m |
Schemes or Observation | Maximum Reflectivity (dBZ) | Height of Maximum Reflectivity Core (km) | Echo Top (km) | Maximum Reflectivity below 1 km (dBZ) | ||||
---|---|---|---|---|---|---|---|---|
WSM6 | 62 | 57 | 3.9 | 3.9 | 12.8 | 10.2 | 60 | 48 |
Goddard | 61 | 52 | 5.9 | 8.3 | 12.0 | 12.0 | 54 | 45 |
Thompson | 58 | 55 | 3.5 | 6.3 | 11.6 | 10.8 | 54 | 39 |
MY2 | 54 | 54 | 7.3 | 6.3 | 11.0 | 8.5 | 37 | 42 |
Morrison2 | 59 | 55 | 3.9 | 5.9 | 12.2 | 9.5 | 50 | 43 |
Observation | 57 | 57 | 2.5 | 4.5 | 15.0 | 11.3 | 55 | 26 |
Indices | Observation | WSM6 | Goddard | Thompson | MY2 | Morrison2 |
---|---|---|---|---|---|---|
CAPE | 441.9 | 695.3 | 622.8 | 708.5 | 742.1 | 595.3 |
CIN | −165.1 | −249.6 | −253.7 | −252.4 | −257.0 | −246.7 |
K | 28.4 | 28.9 | 28.7 | 28.7 | 27.9 | 27.8 |
TT | 55.4 | 56.0 | 54.4 | 55.5 | 55.7 | 53.9 |
LI | −2.4 | −4.3 | −3.6 | −4.1 | −4.2 | −3.4 |
SWEAT | 351.3 | 375.5 | 343.5 | 363.8 | 366.3 | 327.5 |
WS_6 | 34.1 | 26.3 | 27.5 | 27.8 | 29.7 | 28.9 |
WBT_0 | 2929.3 | 2920.9 | 2946.7 | 2934.0 | 2905.5 | 2933.8 |
WBT_N20 | 5906.4 | 5881.0 | 5883.3 | 5815.0 | 5793.3 | 5880.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.; Chen, B.; Qiao, F.; Wang, R.; Wei, C.; Liu, Q. Effects of Microphysics Parameterizations on Forecasting a Severe Hailstorm of 30 April 2021 in Eastern China. Atmosphere 2023, 14, 526. https://doi.org/10.3390/atmos14030526
Jiang F, Chen B, Qiao F, Wang R, Wei C, Liu Q. Effects of Microphysics Parameterizations on Forecasting a Severe Hailstorm of 30 April 2021 in Eastern China. Atmosphere. 2023; 14(3):526. https://doi.org/10.3390/atmos14030526
Chicago/Turabian StyleJiang, Fulin, Bo Chen, Fengxue Qiao, Rui Wang, Chaoshi Wei, and Qiyang Liu. 2023. "Effects of Microphysics Parameterizations on Forecasting a Severe Hailstorm of 30 April 2021 in Eastern China" Atmosphere 14, no. 3: 526. https://doi.org/10.3390/atmos14030526
APA StyleJiang, F., Chen, B., Qiao, F., Wang, R., Wei, C., & Liu, Q. (2023). Effects of Microphysics Parameterizations on Forecasting a Severe Hailstorm of 30 April 2021 in Eastern China. Atmosphere, 14(3), 526. https://doi.org/10.3390/atmos14030526