Characterization of Laboratory Particulate Matter (PM) Mass Setups for Brake Emission Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup
- A probe to extract the diluted sample. The probe may have up to one bend that does not exceed 90°. The bending radius must be at least four times the probe’s inner diameter (4∙dp).
- A sampling nozzle fitted to the probe’s end to achieve isokinetic sampling (0.90–1.15). The nozzle(s) must have its axis parallel to the sampling dilution tunnel, ensuring that the aspiration angle does not exceed 15°.
- A cyclonic separator to remove particles larger than 2.5 μm (PM2.5) or 10 μm (PM10), mounted directly at the sampling probe’s outlet.
- A sampling line from the cyclonic separator to the PM filter holder. The PM sampling line may have up to one bend. The bending radius must be at least twenty-five times the sampling line’s inner diameter (25∙ds).
- A flow control device with an accuracy of ±2.5% of the reading or ±1.5% of the full scale—whichever is smaller.
2.2. Scenarios
- PM setup with minimum particle losses, and thus maximum penetration, abbreviated as “max penetration”.
- PM setup with all permissible settings or values in the technical requirements maximizing particle losses, abbreviated as “min penetration”.
3. Results
4. Discussion
4.1. Penetration for Various Size Distributions
4.2. Penetrations in the Literature
4.3. Literature PM Ratios
4.4. Uncertainties and Differences between PM Setups
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Environmental Agency (EEA) Air Quality in Europe 2022. Report No. 05/2022. ISBN 978-92-9480-515-7. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2022 (accessed on 5 March 2023).
- Beloconi, A.; Vounatsou, P. Substantial Reduction in Particulate Matter Air Pollution across Europe during 2006–2019: A Spatiotemporal Modeling Analysis. Environ. Sci. Technol. 2021, 55, 15505–15518. [Google Scholar] [CrossRef] [PubMed]
- Hjelm, R.; Wahlström, J.; Yenibayrak, I.; Sabani, D.; Runsten, P.; Lyu, Y. Airborne Wear Particles from Dry Clutches. Atmosphere 2022, 13, 1700. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-Exhaust Traffic Emissions: Sources, Characterization, and Mitigation Measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef] [PubMed]
- OECD. Non-Exhaust Particulate Emissions from Road Transport: An Ignored Environmental Policy Challenge; OECD: Paris, France, 2020; ISBN 978-92-64-45244-2. [Google Scholar]
- Grigoratos, T.; Martini, G. Brake Wear Particle Emissions: A Review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef]
- Hicks, W.; Beevers, S.; Tremper, A.H.; Stewart, G.; Priestman, M.; Kelly, F.J.; Lanoisellé, M.; Lowry, D.; Green, D.C. Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road. Atmosphere 2021, 12, 190. [Google Scholar] [CrossRef]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory Testing of Airborne Brake Wear Particle Emissions Using a Dynamometer System under Urban City Driving Cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Perricone, G.; Wahlström, J.; Olofsson, U. Towards a Test Stand for Standardized Measurements of the Brake Emissions. Proc. Inst. Mech. Engineers. Part D J. Automob. Eng. 2016, 230, 1521–1528. [Google Scholar] [CrossRef]
- zum Hagen, F.H.F.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions. Environ. Sci. Technol. 2019, 53, 5143–5150. [Google Scholar] [CrossRef]
- Mathissen, M.; Grigoratos, T.; Gramstat, S.; Mamakos, A.; Vedula, R.; Agudelo, C.; Grochowicz, J.; Giechaskiel, B. Interlaboratory Study on Brake Particle Emissions Part II: Particle Number Emissions. Atmosphere 2023, 14, 424. [Google Scholar] [CrossRef]
- Kwak, J.; Kim, H.; Lee, J.; Lee, S. Characterization of Non-Exhaust Coarse and Fine Particles from on-Road Driving and Laboratory Measurements. Sci. Total Environ. 2013, 458–460, 273–282. [Google Scholar] [CrossRef]
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef] [PubMed]
- Perricone, G.; Alemani, M.; Wahlström, J.; Olofsson, U. A Proposed Driving Cycle for Brake Emissions Investigation for Test Stand. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 122–135. [Google Scholar] [CrossRef]
- European Commission Euro 7 Proposal. 2022. Available online: https://single-market-economy.ec.europa.eu/sectors/automotive-industry/environmental-protection/emissions-automotive-sector_en (accessed on 5 March 2023).
- GRPE 87-40e Proposal for a New UN GTR on Laboratory Measurement of Brake Emissions for Light-Duty Vehicles 2023. 87th GRPE session, Geneva Switzerland, 11–13 June 2023. Available online: https://unece.org/transport/documents/2023/01/informal-documents/clean-pmp-proposal-amend-ecetranswp29grpe20234 (accessed on 10 November 2022).
- Grigoratos, T.; Mamakos, A.; Arndt, M.; Lugovyy, D.; Anderson, R.; Hafenmayer, C.; Moisio, M.; Vanhanen, J.; Frazee, R.; Agudelo, C.; et al. Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups. Atmosphere 2023, 14, 103. [Google Scholar] [CrossRef]
- Mathissen, M.; Grochowicz, J.; Schmidt, C.; Vogt, R.; zum Hagen, F.H.F.; Grabiec, T.; Steven, H.; Grigoratos, T. A Novel Real-World Braking Cycle for Studying Brake Wear Particle Emissions. Wear 2018, 414–415, 219–226. [Google Scholar] [CrossRef]
- McFarland, A.R.; Gong, H.; Muyshondt, A.; Wente, W.B.; Anand, N.K. Aerosol Deposition in Bends with Turbulent Flow. Environ. Sci. Technol. 1997, 31, 3371–3377. [Google Scholar] [CrossRef]
- Mamakos, A.; Huber, M.P.; Arndt, M.; Reingruber, H.; Steiner, G.; Weidinger, C. Design of a Laboratory Sampling System for Brake Wear Particle Measurements; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Giechaskiel, B.; Arndt, M.; Schindler, W.; Bergmann, A.; Silvis, W.; Drossinos, Y. Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide. SAE Int. J. Engines 2012, 5, 379–399. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; Wiley: New York, NY, USA, 1999; ISBN 978-0-471-19410-1. [Google Scholar]
- Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed.; Baron, P.A.; Kulkarni, P.; Willeke, K. (Eds.) Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-38741-2. [Google Scholar]
- Vincent, J.H. Aerosol Sampling: Science, Standards, Instrumentation and Applications; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007; ISBN 978-0-470-02725-7. [Google Scholar]
- Von der Weiden, S.-L.; Drewnick, F.; Borrmann, S. Particle Loss Calculator—A New Software Tool for the Assessment of the Performance of Aerosol Inlet Systems. Atmos. Meas. Tech. 2009, 2, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Agudelo, C.; Vedula, R.T.; Odom, T. Estimation of Transport Efficiency for Brake Emissions Using Inertia Dynamometer Testing; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Baron, P.A. Description of an Aerosol Calculator. In Proceedings of the Seventh International Aerosol Conference, American Association for Aerosol Research (AAAR), Saint Paul, MN, USA, 10–15 September 2006; p. 555. [Google Scholar]
- Dirgo, J.; Leith, D. Cyclone Collection Efficiency: Comparison of Experimental Results with Theoretical Predictions. Aerosol Sci. Technol. 1985, 4, 401–415. [Google Scholar] [CrossRef] [Green Version]
- ISO 7708:1995; Air Quality—Particle Size Fraction Definitions for Health-Related Sampling. International Organization for Standardization: Geneva, Switzerland, 1995.
- Mamakos, A.; Arndt, M.; Hesse, D.; Augsburg, K. Physical Characterization of Brake-Wear Particles in a PM10 Dilution Tunnel. Atmosphere 2019, 10, 639. [Google Scholar] [CrossRef] [Green Version]
- Hesse, D.; Augsburg, K. Real Driving Emissions Measurement of Brake Dust Particles; Springer: Wiesbaden, Germany, 2018. [Google Scholar]
- Mamakos, A.; Arndt, M.; Hesse, D.; Hamatschek, C.; Augsburg, K. Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Andersson, J.; Campbell, M.; Marshall, I.; Kramer, L.; Norris, J. Measurement of Emissions from Brake and Tyre Wear; Final Report—Phase 1; Ricardo Energy & Environment: Oxfordshire, UK, 2022. [Google Scholar]
- Agudelo, C.; Vedula, R.T.; Capecelatro, J.; Wang, Q. Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Zhang, T.; Choi, S.; Ahn, S.; Nam, C.; Lee, G. Enclosure Design for Brake Wear Particle Measurement Using Computational Fluid Dynamics. Energies 2021, 14, 2356. [Google Scholar] [CrossRef]
- Augsburg, K.; Hesse, D.; Feißel, T.; Wenzel, F.; Germanow, P. Cfd Based Analysis of Particle-Air Interaction within a Sampling Device for Brake Dust Emissions; FISITA (UK): The Hague, The Netherlands, 2018; ISBN 978-0-9572076-5-3. [Google Scholar]
- Hesse, D.; Hamatschek, C.; Feißel, T.; Sachse, H.; Augsburg, K.; Gramstat, S. Investigations on the Deposition Behaviour of Brake Wear Particles on the Wheel Surface; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J.; Laroo, C.; Parr, G.A. Brake Wear Particulate Matter Emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Grigoratos, T.; Mathissen, M.; Vedula, R.; Mamakos, A.; Agudelo, C.; Gramstat, S.; Giechaskiel, B. Interlaboratory Study on Brake Particle Emissions—Part I: Particulate Matter Mass Emissions. Atmosphere 2023, 14, 498. [Google Scholar] [CrossRef]
- Beji, A.; Deboudt, K.; Khardi, S.; Muresan, B.; Flament, P.; Fourmentin, M.; Lumière, L. Non-Exhaust Particle Emissions under Various Driving Conditions: Implications for Sustainable Mobility. Transp. Res. Part D Transp. Environ. 2020, 81, 102290. [Google Scholar] [CrossRef]
- Chasapidis, L.; Melas, A.D.; Tsakis, A.; Zarvalis, D.; Konstandopoulos, A.A. Sampling and Conditioning Particle System for Solid Particle Measurements down to 10 nm; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; Seidlerová, J.; Šafářová, K.; Filip, P. On Airborne Nano/Micro-Sized Wear Particles Released from Low-Metallic Automotive Brakes. Environ. Pollut. 2011, 159, 998–1006. [Google Scholar] [CrossRef]
- Perricone, G.; Matĕjka, V.; Alemani, M.; Wahlström, J.; Olofsson, U. A Test Stand Study on the Volatile Emissions of a Passenger Car Brake Assembly. Atmosphere 2019, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Alemani, M.; Nosko, O.; Metinoz, I.; Olofsson, U. A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE Int. J. Mater. Manf. 2015, 9, 147–157. [Google Scholar] [CrossRef]
- Agudelo, C.; Vedula, R.T.; Collier, S.; Stanard, A. Brake Particulate Matter Emissions Measurements for Six Light-Duty Vehicles Using Inertia Dynamometer Testing; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Matějka, V.; Metinöz, I.; Wahlström, J.; Alemani, M.; Perricone, G. On the Running-in of Brake Pads and Discs for Dyno Bench Tests. Tribol. Int. 2017, 115, 424–431. [Google Scholar] [CrossRef]
- Park, J.; Joo, B.; Seo, H.; Song, W.; Lee, J.J.; Lee, W.K.; Jang, H. Analysis of Wear Induced Particle Emissions from Brake Pads during the Worldwide Harmonized Light Vehicles Test Procedure (WLTP). Wear 2021, 466–467, 203539. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle Size and Composition Distribution Analysis of Automotive Brake Abrasion Dusts for the Evaluation of Antimony Sources of Airborne Particulate Matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Alemani, M.; Wahlström, J.; Olofsson, U. On the Influence of Car Brake System Parameters on Particulate Matter Emissions. Wear 2018, 396–397, 67–74. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef] [PubMed]
- Oroumiyeh, F.; Zhu, Y. Brake and Tire Particles Measured from On-Road Vehicles: Effects of Vehicle Mass and Braking Intensity. Atmos. Environ. X 2021, 12, 100121. [Google Scholar] [CrossRef]
- Azadi, M.; Azadi, M.; Mohebbi, A. A CFD Study of the Effect of Cyclone Size on Its Performance Parameters. J. Hazard. Mater. 2010, 182, 835–841. [Google Scholar] [CrossRef] [PubMed]
Part | “Max Penetration” Setup | “Min Penetration” Setup |
---|---|---|
Nozzle | Isoaxial θ = 0° | Anisoaxial θ = 15° |
Nozzle | dnoz = 5 mm | dnoz = 16.5 mm |
Nozzle | Isokinetic ratio = 1.0 | Anisokinetic ratio = 1.15 |
Gravitational loses | Tunnel, probe, sampling line | Tunnel, probe, sampling line |
Inertial losses | Tunnel, probe, sampling line | Tunnel, probe, sampling line |
Tunnel | Qi = 1100 m3/h, di = 175 mm, Li = 1 m | Qi = 100 m3/h, di = 225 mm, Li = 1.35 m |
Tunnel bend | No bend | 90°, rb,i = 450 mm |
Probe | Qp = 15 L/min, dp = 10 mm, Lp = 1 m | Qp = 10 L/min, dp = 18 mm, Lp = 1 m |
Probe bend | No bend | 90°, rb,p = 72 mm |
Sampling (PSL) | Qs = 15 L/min, ds = 10 mm, Ls = 1 m | Qs = 10 L/min, ds = 20 mm, Ls = 1 m |
PSL bend | 90°, rb,s = 250 mm | 180°, rb,s = 500 mm |
Cyclone 2.5 μm | P1.5μm = 90%, P2μm = 70%, P3μm = 30%, P4μm = 10% | P1.5μm = 80%, P2μm = 50%, P3μm = 25%, P4μm = 10% |
Cyclone 10 μm | P4μm = 94%, P8μm = 66%, P10μm = 50%, P12.5μm = 33% | P4μm = 80%, P8μm = 50%, P10μm = 40%, P12.5μm = 27% |
Scenario | “Min Penetration” Setup | “Max Penetration” Setup | ||||
---|---|---|---|---|---|---|
CMD/MMD 1 | 2.5 μm | 10 μm | PM2.5/PM10 | 2.5 μm | 10 μm | PM2.5/PM10 |
0.1 μm/0.4 μm | 100%/97% | 100%/100% | 98% | 100%/98% | 100%/100% | 99% |
0.3 μm/1.3 μm | 99%/72% | 100%/93% | 77% | 100%/78% | 100%/98% | 80% |
0.5 μm/2.1 μm | 96%/49% | 99%/84% | 58% | 98%/55% | 100%/92% | 60% |
0.7 μm/3.0 μm | 91%/33% | 98%/74% | 45% | 94%/39% | 99%/86% | 45% |
1.0 μm/4.2 μm | 82%/20% | 96%/60% | 32% | 87%/23% | 99%/75% | 31% |
1.5 μm/6.3 μm | 66%/9% | 91%/43% | 21% | 73%/10% | 96%/58% | 18% |
2.0 μm/8.5 μm | 53%/5% | 85%/32% | 14% | 60%/5% | 93%/45% | 11% |
2.5 μm/10.6 μm | 42%/2% | 79%/24% | 10% | 49%/3% | 89%/35% | 8% |
3.0 μm/12.7 μm | 34%/1% | 73%/18% | 8% | 40%/2% | 85%/27% | 6% |
Scenario | ISO 7708:1995 | ||
---|---|---|---|
CMD/MMD 1 | Respirable (2.5 μm) | Thoracic (10 μm) | PM2.5/PM10 |
0.1 μm/0.4 μm | 100%/98% | 100%/99% | 99% |
0.3 μm/1.3 μm | 99%/76% | 99%/96% | 80% |
0.5 μm/2.1 μm | 97%/54% | 99%/92% | 59% |
0.7 μm/3.0 μm | 93%/38% | 98%/87% | 44% |
1.0 μm/4.2 μm | 85%/23% | 97%/79% | 29% |
1.5 μm/6.3 μm | 71%/11% | 95%/65% | 16% |
2.0 μm/8.5 μm | 59%/5% | 92%/53% | 10% |
2.5 μm/10.6 μm | 48%/3% | 90%/44% | 7% |
3.0 μm/12.7 μm | 39%/2% | 87%/36% | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoratos, T.; Mamakos, A.; Vedula, R.; Arndt, M.; Lugovyy, D.; Hafenmayer, C.; Moisio, M.; Agudelo, C.; Giechaskiel, B. Characterization of Laboratory Particulate Matter (PM) Mass Setups for Brake Emission Measurements. Atmosphere 2023, 14, 516. https://doi.org/10.3390/atmos14030516
Grigoratos T, Mamakos A, Vedula R, Arndt M, Lugovyy D, Hafenmayer C, Moisio M, Agudelo C, Giechaskiel B. Characterization of Laboratory Particulate Matter (PM) Mass Setups for Brake Emission Measurements. Atmosphere. 2023; 14(3):516. https://doi.org/10.3390/atmos14030516
Chicago/Turabian StyleGrigoratos, Theodoros, Athanasios Mamakos, RaviTeja Vedula, Michael Arndt, Dmytro Lugovyy, Christian Hafenmayer, Mikko Moisio, Carlos Agudelo, and Barouch Giechaskiel. 2023. "Characterization of Laboratory Particulate Matter (PM) Mass Setups for Brake Emission Measurements" Atmosphere 14, no. 3: 516. https://doi.org/10.3390/atmos14030516
APA StyleGrigoratos, T., Mamakos, A., Vedula, R., Arndt, M., Lugovyy, D., Hafenmayer, C., Moisio, M., Agudelo, C., & Giechaskiel, B. (2023). Characterization of Laboratory Particulate Matter (PM) Mass Setups for Brake Emission Measurements. Atmosphere, 14(3), 516. https://doi.org/10.3390/atmos14030516