The Hemispheric Asymmetry of Gravity Wave Impact on the Polar Mesospheric Cloud, Based on the Aeronomy of Ice in the Mesosphere Satellite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. The Distributions of the GW Potential Energy over the Two Hemispheres
3.2. The Distributions of the Ice Water Content (IWC)
3.3. The Distributions of the Albedo of the PMCs
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leslie, R.C. Sky Glows. Nature 1885, 32, 245. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.E. Solar Mesosphere Explorer measurements of polar mesospheric clouds (noctilucent clouds). J. Atmos. Terr. Phys. 1984, 46, 819–824. [Google Scholar] [CrossRef]
- Balsley, B.; Ecklund, W.; Fritts, D. VHF echoes from the high-latitude mesosphere and lower thermosphere: Observations and interpretations. J. Atmos. Sci. 1983, 40, 2451–2466. [Google Scholar] [CrossRef]
- Gerrard, A.J.; Kane, T.J.; Thayer, J.P. Noctilucent clouds and wave dynamics: Observations at Sondrestrom, Greenland. Geophys. Res. Lett. 1998, 25, 2817–2820. [Google Scholar] [CrossRef]
- Kaifler, N.; Baumgarten, G.; Fiedler, J.; Latteck, R.; Lübken, F.-J.; Rapp, M. Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999–2008. Atmos. Meas. Tech. 2011, 10, 1355–1366. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.H.; Deaver, L.E.; Hervig, M.E.; Russell, J.M.; Siskind, D.E.; Sheese, P.E.; Llewellyn, E.J.; Gattinger, R.L.; Höffner, J.; Marshall, B.T. Validation of upper mesospheric and lower thermospheric temperatures measured by the Solar Occultation for Ice Experiment. J. Geophys. Res. Atmos. 2012, 117, 304. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.E.; Lumpe, J.; Bardeen, C.; Randall, C.E. Albedo-Ice Regression method for determining ice water content of polar mesospheric clouds using ultraviolet observations from space. Atmos. Meas. Tech. 2019, 12, 1755–1766. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.E. Mesospheric clouds and the physics of the mesopause region. Rev. Geophys. 1991, 29, 553–575. [Google Scholar] [CrossRef]
- Bu, L.B.; Zhang, Z.Y.; Gao, H.Y. Characteristics of perturbations induced by small-scale gravity waves on ice particle size dis-tribution of noctilucent clouds. Chin. J. Geophys. 2016, 59, 12. [Google Scholar] [CrossRef]
- Thurairajah, B.; Sato, K.; Yue, J.; Nakamura, T.; Kohma, M.; Bailey, S.M.; Russell, J.M. Simultaneous observation of gravity waves at PMC altitude from AIM/CIPS experiment and PANSY radar over Syowa (69° S, 39° E). J. Atmos. Solar-Terr. Phys. 2017, 164, 324–331. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Z.; Lü, D. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005. Sci. China Earth Sci. 2011, 55, 602–610. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Z.; Lu, D. Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon. Sci. China Earth Sci. 2012, 56, 54–62. [Google Scholar] [CrossRef]
- Kirkwood, S.; Cho, J.; Hall, C.; Hoppe, U.-P.; Murtagh, D.; Stegman, J.; Swartz, W.; van Eyken, A.; Wannbergt, G.; Witt, G. A comparison of PMSE and other ground-based observations during the NLC-91 campaign. J. Atmos. Terr. Phys. 1995, 57, 35–44. [Google Scholar] [CrossRef]
- Rapp, M.; Lübken, F.; Müllemann, A.; Thomas, G.E.; Jensen, E.J. Small-scale temperature variations in the vicinity of NLC: Experimental and model results. J. Geophys. Res. Atmos. 2002, 107, AAC 11-1–AAC 11-20. [Google Scholar] [CrossRef]
- Gerrard; Andrew; Thayer, J.; Kane, T. Mesospheric clouds and the duality of gravity waves. Eos 2002, 83, 488. [Google Scholar] [CrossRef] [Green Version]
- Chandran, A.; Rusch, D.W.; Merkel, A.W.; Palo, S.E.; Thomas, G.E.; Taylor, M.J.; Bailey, S.M.; Russell, J.M. Polar mesospheric cloud structures observed from the cloud imaging and particle size experiment on the Aeronomy of Ice in the Mesosphere spacecraft: Atmospheric gravity waves as drivers for longitudinal variability in polar mesospheric cloud occurrence. J. Geophys. Res. Atmos. 2010, 115, D13102. [Google Scholar] [CrossRef] [Green Version]
- Czechowsky, P.; Rüster, R.; Schmidt, G. Variations of mesospheric structures in different seasons. Geophys. Res. Lett. 1979, 6, 459–462. [Google Scholar] [CrossRef]
- Ecklund, W.L.; Balsley, B.B. Long-term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska. J. Geophys. Res. Atmos. 1981, 86, 7775–7780. [Google Scholar] [CrossRef]
- Dowdy, A.; Vincent, R.A.; Igarashi, K.; Murayama, Y.; Murphy, D.J. A comparison of mean winds and gravity wave activity in the northern and southern polar MLT. Geophys. Res. Lett. 2001, 28, 1475–1478. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.M.; Merkel, A.W.; Thomas, G.E.; Rusch, D.W. Hemispheric differences in Polar Mesospheric Cloud morphology observed by the Student Nitric Oxide Explorer. J. Atmos. Solar-Terr. Phys. 2007, 69, 1407–1418. [Google Scholar] [CrossRef]
- Gerrard, A.J.; Kane, T.J.; Thayer, J.P.; Eckermann, S. Concerning the upper stratospheric gravity wave and mesospheric cloud relationship over Sondrestrom, Greenland. J. Atmos. Solar-Terr. Phys. 2004, 66, 229–240. [Google Scholar] [CrossRef]
- Gerrard, A.J.; Kane, T.J.; Thayer, J.P.; Eckermann, S.D. Gravity waves and mesospheric clouds in the summer middle atmosphere: A comparison of lidar measurements and ray modeling of gravity waves over Sondrestrom, Greenland. J. Geophys. Res. Atmos. 2004, 109, 103. [Google Scholar] [CrossRef]
- Thayer, J.P.; Rapp, M.; Gerrard, A.J.; Gudmundsson, E.; Kane, T.J.; Rapp, M. Gravity-wave influences on Arctic mesospheric clouds as determined by a Rayleigh lidar at Sondrestrom, Greenland. J. Geophys. Res. Atmos. 2003, 108, 8449. [Google Scholar] [CrossRef]
- Innis, J.L.; Klekociuk, A.R.; Morris, R.J.; Cunningham, A.P.; Graham, A.D.; Murphy, D.J. A study of the relationship between stratospheric gravity waves and polar mesospheric clouds at Davis Antarctica. J. Geophys. Res. Atmos. 2008, 113, 102. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.M.; Bailey, S.M.; Gordley, L.L.; Rusch, D.W.; Horányi, M.; Hervig, M.E.; Thomas, G.E.; Randall, C.E.; Siskind, D.E.; Stevens, M.H.; et al. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results. J. Atmos. Solar-Terr. Phys. 2009, 71, 289–299. [Google Scholar] [CrossRef]
- McClintock, W.; Rusch, D.W.; Thomas, G.; Merkel, A.; Lankton, M.; Drake, V.; Bailey, S.; Russell, J. The cloud imaging and particle size experiment on the Aeronomy of Ice in the mesosphere mission: Instrument concept, design, calibration, and on-orbit performance. J. Atmos. Solar-Terr. Phys. 2009, 71, 340–355. [Google Scholar] [CrossRef]
- Gordley, L.; Hervig, M.; Russell, J. The Solar Occultation for Ice Experiment (SOFIE): In-Orbit Performance and Initial Results. AGU Fall Meet. Abstr. 2007, 2007, SA14A-03. [Google Scholar]
- Lumpe, J.; Bailey, S.; Carstens, J.; Randall, C.; Rusch, D.; Thomas, G.; Nielsen, K.; Jeppesen, C.; McClintock, W.; Merkel, A.; et al. Retrieval of polar mesospheric cloud properties from CIPS: Algorithm description, error analysis and cloud detection sensitivity. J. Atmos. Solar-Terr. Phys. 2013, 104, 167–196. [Google Scholar] [CrossRef]
- Hervig, M.E.; Gordley, L.L.; Deaver, L.E.; Siskind, D.E.; Stevens, M.H.; Russell, J.M.; Bailey, S.M.; Megner, L.; Bardeen, C.G. First Satellite Observations of Meteoric Smoke in the Middle Atmosphere. Geophys. Res. Lett. 2009, 36, 805. [Google Scholar] [CrossRef]
- Hervig, M.E.; Stevens, M.H.; Gordley, L.L.; Deaver, L.E.; Russell, J.M.; Bailey, S.M. Relationships between polar mesospheric clouds, temperature, and water vapor from Solar Occultation for Ice Experiment (SOFIE) observations. J. Geophys. Res. Atmos. 2009, 114, 203. [Google Scholar] [CrossRef]
- Gao, H.; Shepherd, G.G.; Tang, Y.; Bu, L.; Wang, Z. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM. Ann. Geophys. 2017, 35, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET). J. Geophys. Res. Atmos. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Wilson, R.; Chanin, M.L.; Hauchecorne, A. Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology. J. Geophys. Res. Atmos. 1991, 96, 5169. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Liu, H.-L. Large-scale gravity wave perturbations in the mesopause region above Northern Hemisphere midlatitudes during autumnal equinox: A joint study by the USU Na lidar and Whole Atmosphere Community Climate Model. Ann. Geophys. 2017, 35, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Hu, X.; Pan, W.; Yan, Z.; Guo, W. Mesospheric Gravity Wave Potential Energy Density Observed by Rayleigh Lidar above Golmud (36.25° N, 94.54° E), Tibetan Plateau. Atmosphere 2022, 13, 1084. [Google Scholar] [CrossRef]
- Hervig, M.; Siskind, D. Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature. J. Atmos. Solar-Terr. Phys. 2006, 68, 30–41. [Google Scholar] [CrossRef]
- Liu, H.-L.; Roble, R.G. A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3. J. Geophys. Res. Atmos. 2002, 107, ACL 15-1–ACL 15-18. [Google Scholar] [CrossRef]
- Orsolini, Y.J.; Urban, J.; Murtagh, D.P.; Lossow, S.; Limpasuvan, V. Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Sub-Millimeter Radiometer. J. Geophys. Res. Atmos. 2010, 115, D12305. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Wang, N.; Soon, W.; Herrera, V.M.V.; Yang, C.; Dou, X. The Hemispheric Asymmetry of Gravity Wave Impact on the Polar Mesospheric Cloud, Based on the Aeronomy of Ice in the Mesosphere Satellite. Atmosphere 2023, 14, 419. https://doi.org/10.3390/atmos14030419
Qiu S, Wang N, Soon W, Herrera VMV, Yang C, Dou X. The Hemispheric Asymmetry of Gravity Wave Impact on the Polar Mesospheric Cloud, Based on the Aeronomy of Ice in the Mesosphere Satellite. Atmosphere. 2023; 14(3):419. https://doi.org/10.3390/atmos14030419
Chicago/Turabian StyleQiu, Shican, Ning Wang, Willie Soon, Victor Manuel Velasco Herrera, Chengyun Yang, and Xiankang Dou. 2023. "The Hemispheric Asymmetry of Gravity Wave Impact on the Polar Mesospheric Cloud, Based on the Aeronomy of Ice in the Mesosphere Satellite" Atmosphere 14, no. 3: 419. https://doi.org/10.3390/atmos14030419
APA StyleQiu, S., Wang, N., Soon, W., Herrera, V. M. V., Yang, C., & Dou, X. (2023). The Hemispheric Asymmetry of Gravity Wave Impact on the Polar Mesospheric Cloud, Based on the Aeronomy of Ice in the Mesosphere Satellite. Atmosphere, 14(3), 419. https://doi.org/10.3390/atmos14030419