Fine Particulate Matter Concentration and Early Deaths Related to Thermal Power Plants and National Industrial Complexes in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Quality (AQ) Simulation
2.2. Estimation of the Number of Early Deaths
3. Results
3.1. Distribution of Major Pollution Sources and the Exposed Population
3.2. Air Quality Model Validation
3.3. Characteristics of Emissions from TPPs and NICs
3.4. Changes in PM2.5 Concentration and Number of Early Deaths by Pollution Source
4. Discussion and Conclusions
4.1. Strengths of This Study
4.2. Limitations and Future Research Directions
4.2.1. Limitations of Considered Pollution Sources
4.2.2. Limitations on the Estimation of the Number of Early Deaths
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, B.-U.; Kim, O.; Kim, H.C.; Kim, S. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea. J. Air Waste Manag. Assoc. 2016, 66, 863–873. [Google Scholar] [CrossRef]
- Kim, S.; Kim, O.; Kim, B.-U.; Kim, H.C. Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area [Internet]. J. Korean Soc. Atmos. Environ. 2017, 33, 159–173. [Google Scholar] [CrossRef]
- Buonocore, J.J.; Dong, X.; Spengler, J.D.; Fu, J.S.; Levy, J.I. Using the Community Multiscale Air Quality (CMAQ) model to estimate public health impacts of PM2.5 from individual power plants. Environ. Int. 2014, 68, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Beig, G.; Song, S.; Zhang, H.; Hu, J.; Ying, Q.; Liang, F.; Liu, Y.; Wang, H.; Lu, X.; et al. The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India. Environ. Int. 2018, 121, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. The Benefits and Costs of the Clean Air Act from 1990 to 2020; Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Ministry of Environment. The Second Basic Plan on the Metropolitan Area Air Quality Management (2015–2024); Ministry of Environment: Sejong, Republic of Korea, 2013. [Google Scholar]
- Lelieveld, J.; Evas, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported blobal air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar]
- Ministry of Environment. A Study on the Establishment and Application of Health Evaluation Model for Reduction of Environmental Pollution Control Policy; Ministry of Environment: Sejong, Republic of Korea, 2007. [Google Scholar]
- Ministry of Environment. The Study of Setting Policy Direction for Risk Management of Air Pollution; Ministry of Environment: Sejong, Republic of Korea, 2013. [Google Scholar]
- Bae, H.J.; Park, J. Health benefits of improving air quality in the rapidly aging Korean society. Sci. Total Environ. 2009, 407, 5971–5977. [Google Scholar] [CrossRef]
- Bae, H.J.; Kim, M.; Lee, A.K.; Park, J. Acute Effects of PM10 on Asthma Hospitalization Among Children and Benefit Analysis at Four Major Cities in Korea. J. Environ. Health Sci. 2009, 35, 1–10, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Bae, H.J.; Shin, J.Y.; Park, C.K.; Jung, K. Improving of Atomospheric PM2.5 Levels and Related Premature Deaths in Seoul, Korea. J. Korean Soc. Atmos. Environ. 2010, 26, 10–20, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, S.; Lee, S.-H.; Kim, B.-U.; Lee, P. Fine-Scale Columnar and Surface NOx Concentrations over South Korea: Comparison of Surface Monitors, TROPOMI, CMAQ and CAPSS Inventory. Atmosphere 2020, 11, 101. [Google Scholar] [CrossRef]
- Hur, S.K.; Ho, C.H.; Kim, J.; Oh, H.-R.; Koo, Y.S. Systematic bias of WRF-CMAQ PM10 simulations for Seoul, Korea. Atmos. Environ. 2021, 244, 117904. [Google Scholar] [CrossRef]
- Choi, M.-W.; Lee, J.-H.; Woo, J.-W.; Kim, C.-H.; Lee, S.-H. Comparison of PM2.5 Chemical Components over East Asia Simulated by the WRF-Chem and WRF/CMAQ Models: On the Models’ Prediction Inconsistency. Atmosphere 2019, 10, 618. [Google Scholar] [CrossRef]
- Zhang, Q.; Xue, D.; Liu, X.; Gong, X.; Gao, H. Process analysis of PM2.5 pollution events in a coastal city of China using CMAQ. J. Environ. Sci. 2019, 79, 225–238. [Google Scholar] [CrossRef]
- Uranishi, K.; Ikemori, F.; Shimadera, H.; Kondo, K.; Sugata, S. Impact of field biomass burning on local pollution and long-range transport of PM2.5 in Northeast Asia. Environ. Pollut. 2019, 244, 414–422. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of 437 Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: 440 RRTM, a validated correlated-K model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-443 Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for 446 the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling 448 System, Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 120, 569–585. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181, 453. [Google Scholar] [CrossRef]
- Carter, W.P.L. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment; Air Pollution Research Center and College of Engineering Center for Environmental Research and Technology University of California: Pasadena, CA, USA, 1999; Available online: https://intra.engr.ucr.edu/~carter/pubs/s99doc.pdf (accessed on 1 March 2020).
- Colella, P.; Woodward, P.L. The piecewise parabolic method (PPM) for gasdynamical simulations. J. Comput. Phys. 1984, 461, 174–201. [Google Scholar] [CrossRef]
- Louise, J.F. A Parametic Model of Vertical Eddy Fluxes in the Atmosphere. Bound.-Layer Meteor. 1979, 17, 187–202. [Google Scholar] [CrossRef]
- Pleim, J.E.; Chang, J.S. A non-local closure model in the convective boundary layer. Atmos. Environ. 1992, 26, 965–981. [Google Scholar] [CrossRef]
- Environmental Protection Agency. BenMAP: Environmental Benefits and Mapping Analysis Program—Community Edition User’s Manual; Environmental Protection Agency: Washington, DC, USA, 2022. [Google Scholar]
- Davidson, K.; Hallberg, A.; McCubbin, D.; Hubbell, B. Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP). J. Toxicol. Environ. Health 2007, 32, 571–577. [Google Scholar]
- World Health Organization. Health Risks of Air Pollution in Europe-HRAPIE Project: Regional Office for Europe; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Mircea, M.; Calori, G.; Pirovano, G.; Belis, C. EUR 30082 EN; European Guide on Air Pollution Source Apportionment for Particulate Matter with Source Oriented Models and Their Combined Use with Receptor Models. Publications Office of the European Union: Luxembourg, 2020; p. JRC119067ISBN 978-92-76-10698-2. [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks 467 to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar]
- Gordis, L. Epidemiology, 4th ed.; Elsevier: Berkeley, CA, USA, 2008. [Google Scholar]
- Kim, H.; Kim, H.; Lee, J.T. Effects of ambient air particles on mortality in Seoul: Have the effects changed over time? Environ. Res. 2015, 140, 684–690. [Google Scholar] [CrossRef]
- Ha, J.; Moon, N. Uncertainty and estimation of health burden from particulate matter in Seoul metropolitan region. J. Korean Soc. Atmos. Environ. 2013, 29, 275–286, (In Korean with English Abstract). [Google Scholar]
- Künzli, N.; Medina, S.; Kaiser, R.; Quenel, P.; Horak Jr, F.; Studnicka, M. Assessment of deaths attributable to air pollution: Should we use risk estimates based on time series or on cohort studies? Am. J. Epidemiol. 2001, 153, 1050–1055. [Google Scholar]
(a) WRF | ||
---|---|---|
Physics | Selected Option | Reference |
Microphysics | WSM 3-class simple ice scheme | [19] |
Longwave Radiation | RRTM scheme | [20] |
Shortwave Radiation | Dudhia scheme | [21] |
Surface Layer | Revised MM5 Monin–Obukhov scheme | [22] |
Land Surface | Unified Noah land–surface model | [23] |
Planetary Boundary layer | YSU scheme | [24] |
Cumulus Parameterization | Kain–Fritsch scheme | [25] |
(b) CMAQ | ||
Category | Selected Option | Reference |
Chemical Mechanism | SAPRC99 | [26] |
Advection Scheme | PPM | [27] |
Horizontal Diffusion | Multiscale | [28] |
Vertical Diffusion | Eddy | [28] |
Cloud Scheme | ACM | [29] |
Number of Sites (N) | Annual Mean (μg/m3) | R | Bias | RMSE | IOA | ||
---|---|---|---|---|---|---|---|
Observed | Modeled | ||||||
Annual | 95 | 24.79 | 21.16 | 0.50 | −3.62 | 16.64 | 0.68 |
Substances | CAPSS 2015 | CAPSS 2013 | ||||
---|---|---|---|---|---|---|
Nationwide (Tons/Year) | TPPs (Tons/Year) | Percentage (TPPs/Nationwide) | Nationwide (Tons/Year) | NICs (Tons/Year) | Percentage (TPPs/Nationwide) | |
NOx | 1,090,614 | 130,860 | 12.0% | 1,157,728 | 195,199 | 16.9% |
SOx | 404,660 | 70,777 | 17.5% | 352,292 | 158,777 | 45.1% |
VOC | 913,573 | 12,384 | 1.4% | 1,010,771 | 235,070 | 23.3% |
CO | 696,682 | 47,369 | 6.8% | 792,776 | 75,694 | 9.5% |
NH3 | 292,973 | 864 | 0.3% | 297,167 | 24,698 | 8.3% |
PM10 | 121,563 | 4166 | 3.4% | 233,177 | 68,832 | 29.5% |
PM2.5 | 76,802 | 3450 | 4.5% | 98,806 | 37,489 | 37.9% |
Classification | SMR | Central Region | Southeast Region | Southern Region | Other | Nationwide | ||
---|---|---|---|---|---|---|---|---|
Number of people aged 30 and over (N) | 16,614,550 | 3,909,205 | 7,410,629 | 1,672,892 | 4,517,311 | 34,124,587 | ||
Mortality of people aged 30 and over (N per 100,000) | 632 | 879 | 799 | 866 | 1273 | 793 | ||
Contribution concentration and number of early deaths by PM2.5 emission source | TPPs | PM2.5 concentration (μg/m3) | 0.616 | 1.136 | 0.420 | 0.695 | 0.503 | 0.611 |
Level of concentration compared to the national level | 1.010 | 1.861 | 0.687 | 1.139 | 0.823 | 1.000 | ||
Number of early deaths (N (95% CI)) | 390 (254~525) | 238 (156~321) | 150 (98~202) | 61 (39~82) | 178 (116~240) | 1017 (663~1369) | ||
Contribution to the number of early deaths nationwide | 38.3% | 23.4% | 14.8% | 6.0% | 17.5% | 100.0% | ||
NICs | PM2.5 concentration (μg/m3) | 0.824 | 1.361 | 2.551 | 1.336 | 0.883 | 1.245 | |
Level of concentration compared to the national level | 0.662 | 1.093 | 2.048 | 1.073 | 0.709 | 1.000 | ||
Number of early deaths | 508 (332~684) | 286 (187~384) | 874 (572~1173) | 116 (76~156) | 308 (201~415) | 2091 (1367~2812) | ||
PM2.5 contribution to the number of early deaths nationwide | 24.3% | 13.7% | 41.8% | 5.6% | 14.7% | 100.0% | ||
Total | PM2.5 concentration (μg/m3) | 1.440 | 2.497 | 2.971 | 2.031 | 1.386 | 1.856 | |
Level of concentration compared to the national level | 0.776 | 1.345 | 1.601 | 1.094 | 0.747 | 1.000 | ||
Number of early deaths (N (95% CI)) | 898 (586~1209) | 524 (342~705) | 1024 (670~1375) | 177 (115~238) | 486 (317~655) | 3108 (2030~4181) | ||
PM2.5 contribution to the number of early deaths nationwide | 28.9% | 16.9% | 32.9% | 5.7% | 15.6% | 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, J.; Moon, N.; Seo, J. Fine Particulate Matter Concentration and Early Deaths Related to Thermal Power Plants and National Industrial Complexes in South Korea. Atmosphere 2023, 14, 344. https://doi.org/10.3390/atmos14020344
Ha J, Moon N, Seo J. Fine Particulate Matter Concentration and Early Deaths Related to Thermal Power Plants and National Industrial Complexes in South Korea. Atmosphere. 2023; 14(2):344. https://doi.org/10.3390/atmos14020344
Chicago/Turabian StyleHa, Jongsik, Nankyoung Moon, and Jihyun Seo. 2023. "Fine Particulate Matter Concentration and Early Deaths Related to Thermal Power Plants and National Industrial Complexes in South Korea" Atmosphere 14, no. 2: 344. https://doi.org/10.3390/atmos14020344
APA StyleHa, J., Moon, N., & Seo, J. (2023). Fine Particulate Matter Concentration and Early Deaths Related to Thermal Power Plants and National Industrial Complexes in South Korea. Atmosphere, 14(2), 344. https://doi.org/10.3390/atmos14020344