A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method of Bias Correction
2.3. Experimental Design
3. Results
3.1. Analysis of Simulation Results
3.1.1. Weekly Mean of 2 m Temperature
3.1.2. Synoptic Analysis
3.2. Evaluation of Daily Temperature Forecast
3.3. Evaluation of Agro-Meteorological Indexes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morales, M.S.; Cook, E.R.; Barichivich, J.; Christie, D.A.; Villalba, R.; LeQuesne, C.; Srur, A.M.; Ferrero, M.E.; González-Reyes, A.; Couvreux, F.; et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl. Acad. Sci. USA 2020, 117, 16816–16823. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Heinicke, S.; Frieler, K.; Jägermeyr, J.; Mengel, M. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environ. Res. Lett. 2022, 17, 044026. [Google Scholar] [CrossRef]
- Im, E.S.; Ha, S.; Qiu, L.; Hur, J.; Jo, S.; Shim, K.M. An Evaluation of Temperature-Based Agricultural Indices Over Korea From the High-Resolution WRF Simulation. Front. Earth Sci. 2021, 9, 656787. [Google Scholar] [CrossRef]
- Song, C.Y.; Kim, S.H.; Ahn, J.B. Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping. Atmosphere 2021, 31, 637–656. [Google Scholar]
- Vitart, F.; Ardilouze, C.; Bonet, A.; Brookshaw, A.; Chen, M.; Codorean, C.; Déqué, M.; Ferranti, L.; Fucile, E.; Fuentes, M.; et al. The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Am. Meteorol. Soc. 2017, 98, 163–173. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, H.; Song, K.; Son, S.W.; Lim, Y.; Kang, H.S.; Hyun, Y.K. Subseasonal-to-Seasonal (S2S) Prediction Skills of GloSea5 Model: Part 1. Geopotential Height in the Northern Hemisphere Extratropics. Atmosphere 2018, 28, 233–245. [Google Scholar] [CrossRef]
- Kim, S.J.; Bae, S.J.; Lee, S.J.; Jang, M.W. Monthly Agricultural Reservoir Storage Forecasting Using Machine Learning. Atmosphere 2022, 13, 1887. [Google Scholar] [CrossRef]
- Brunet, G.; Shapiro, M.; Hoskins, B.; Moncrieff, M.; Dole, R.; Kiladis, G.N.; Kirtman, B.; Lorenc, A.; Mills, B.; Morss, R.; et al. Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction. Bull. Am. Meteorol. Soc. 2010, 91, 1397–1406. [Google Scholar] [CrossRef]
- Mariotti, A.; Ruti, P.M.; Rixen, M. Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Clim. Atmos. Sci. 2018, 1, 4. [Google Scholar] [CrossRef]
- Manrique-Suñén, A.; Gonzalez-Reviriego, N.; Torralba, V.; Cortesi, N.; Doblas-Reyes, F.J. Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. Mon. Weather Rev. 2020, 148, 3995–4008. [Google Scholar] [CrossRef]
- Saha, S.; Nadiga, S.; Thiaw, C.; Wang, J.; Wang, W.; Zhang, Q.; Van den Dool, H.M.; Pan, H.L.; Moorthi, S.; Behringer, D.; et al. The NCEP Climate Forecast System. J. Clim. 2006, 19, 3483–3517. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Tian, D.; Wood, E.; Yuan, X. CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrol. Earth Syst. Sci. Discuss. 2016, 21, 1–24. [Google Scholar] [CrossRef]
- Shin, D.W.; Cocke, S. Alternative ways to evaluate a seasonal dynamical downscaling system. J. Geophys. Res. Atmos. 2013, 118, 13443–13448. [Google Scholar] [CrossRef]
- Shin, D.W.; Baigorria, G.A.; Romero, C.C.; Cocke, S.; Oh, J.H.; Kim, B.M. Assessing crop yield simulations driven by the NARCCAP regional climate models in the southeast United States. J. Geophys. Res. Atmos. 2017, 122, 2549–2558. [Google Scholar] [CrossRef]
- Hari Prasad, K.B.R.R.; Ramu, D.A.; Rao, S.A.; Hameed, S.N.; Samanta, D.; Srivastava, A. Reducing Systematic Biases Over the Indian Region in CFS V2 by Dynamical Downscaling. Earth Space Sci. 2021, 8, e2020EA001507. [Google Scholar] [CrossRef]
- Manzanas, R.; Gutiérrez, J.M.; Fernández, J.; van Meijgaard, E.; Calmanti, S.; Magariño, M.E.; Cofiño, A.S.; Herrera, S. Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Clim. Serv. 2018, 9, 44–56. [Google Scholar] [CrossRef]
- Dasari, H.P.; Salgado, R.; Perdigao, J.; Challa, V.S. A Regional Climate Simulation Study Using WRF-ARW Model over Europe and Evaluation for Extreme Temperature Weather Events. Int. J. Atmos. Sci. 2014, 2014, 704079. [Google Scholar] [CrossRef]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dyn. 2014, 43, 1847–1856. [Google Scholar] [CrossRef]
- Rocheta, E.; Evans, J.P.; Sharma, A. Can Bias Correction of Regional Climate Model Lateral Boundary Conditions Improve Low-Frequency Rainfall Variability? J. Clim. 2017, 30, 9785–9806. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef]
- Qiu, L.; Im, E.S.; Hur, J.; Shim, K.M. Added value of very high resolution climate simulations over South Korea using WRF modeling system. Clim. Dyn. 2020, 54, 173–189. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, 13. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Kain, J.S.; Weiss, S.J.; Bright, D.R.; Baldwin, M.E.; Levit, J.J.; Carbin, G.W.; Schwartz, C.S.; Weisman, M.L.; Droegemeier, K.K.; Weber, D.B.; et al. Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-Allowing NWP. Weather Forecast. 2008, 23, 931–952. [Google Scholar] [CrossRef]
- Park, J.; Chae, Y. Analysis of heat-related illness and excess mortality by heat waves in South Korea in 2018. J. Korean Geogr. Soc. 2020, 55, 391–408. [Google Scholar] [CrossRef]
- Hee-Dong, L.; Ki-Hong, M.; Jeong-Ho, B.; Dong-Hyun, C. Characteristics and Comparison of 2016 and 2018 Heat Wave in Korea. Atmosphere 2020, 30, 1–15. [Google Scholar] [CrossRef]
- Thuy Tran, L.; Lee, C.K.; Jeong, J.H.; Lee, H.S.; Yang, S.Y.; Im, Y.H.; Hwang, W.H. Impact of Heat Stress on Pollen Fertility Rate at the Flowering Stage in Korean Rice (Oryza sativa L.) Cultivars. J. Korean Soc. Crop. Sci. 2020, 65, 22–29. [Google Scholar] [CrossRef]
- Piticar, A. Changes in agro-climatic indices related to temperature in Central Chile. Int. J. Biometeorol. 2019, 63, 499–510. [Google Scholar] [CrossRef] [PubMed]
CASE # | Variables | NOBC (27 km) | NOBC (9 km) | NOBC (3 km) | BC (27 km) | BC (9 km) | BC (3 km) |
---|---|---|---|---|---|---|---|
CASE 1 | Tavg | 4.926 | 4.392 | 4.030 | 4.949 | 4.398 | 4.034 |
Tmax | 6.595 | 6.002 | 5.506 | 6.474 | 5.911 | 5.416 | |
Tmin | 4.075 | 3.659 | 3.481 | 4.243 | 3.769 | 3.558 | |
CASE 2 | Tavg | 3.858 | 3.073 | 2.618 | 4.051 | 3.276 | 2.792 |
Tmax | 5.348 | 4.562 | 3.987 | 5.465 | 4.734 | 4.141 | |
Tmin | 3.629 | 2.908 | 2.609 | 3.927 | 3.138 | 2.798 |
CASE # | Variables | NOBC (27 km) | NOBC (9 km) | NOBC (3 km) | BC (27 km) | BC (9 km) | BC (3 km) |
---|---|---|---|---|---|---|---|
CASE 1 | Tavg | 0.217 | 0.198 | 0.182 | 0.213 | 0.195 | 0.179 |
Tmax | 0.193 | 0.172 | 0.158 | 0.194 | 0.173 | 0.158 | |
Tmin | 0.189 | 0.170 | 0.162 | 0.197 | 0.175 | 0.166 | |
CASE 2 | Tavg | 0.164 | 0.140 | 0.123 | 0.167 | 0.145 | 0.127 |
Tmax | 0.140 | 0.112 | 0.095 | 0.147 | 0.119 | 0.102 | |
Tmin | 0.155 | 0.125 | 0.112 | 0.167 | 0.135 | 0.120 |
CASE # | Variables | NOBC (27 km) | NOBC (9 km) | NOBC (3 km) | BC (27 km) | BC (9 km) | BC (3 km) |
---|---|---|---|---|---|---|---|
CASE 1 | Tavg | 0.196 | 0.162 | 0.164 | 0.124 | 0.147 | 0.145 |
Tmax | 0.046 | 0.058 | 0.092 | 0.058 | 0.100 | 0.105 | |
Tmin | 0.367 | 0.303 | 0.294 | 0.253 | 0.244 | 0.249 | |
CASE 2 | Tavg | 0.521 | 0.581 | 0.574 | 0.518 | 0.549 | 0.559 |
Tmax | 0.437 | 0.491 | 0.472 | 0.432 | 0.450 | 0.451 | |
Tmin | 0.371 | 0.440 | 0.444 | 0.401 | 0.448 | 0.459 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Oh, J.; Huh, M. A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea. Atmosphere 2022, 13, 2086. https://doi.org/10.3390/atmos13122086
Oh J, Oh J, Huh M. A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea. Atmosphere. 2022; 13(12):2086. https://doi.org/10.3390/atmos13122086
Chicago/Turabian StyleOh, Jiwon, Jaiho Oh, and Morang Huh. 2022. "A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea" Atmosphere 13, no. 12: 2086. https://doi.org/10.3390/atmos13122086
APA StyleOh, J., Oh, J., & Huh, M. (2022). A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea. Atmosphere, 13(12), 2086. https://doi.org/10.3390/atmos13122086