CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Are the Global Surface Temperature Records Warm Biased?
4.1. Comparison with the Lower Troposphere Temperature Record
4.2. Urban Heat Island and Other Non-Climatic Warm Biases
4.3. The Land Warms Too Much More Than the Ocean
4.4. The “Divergence Problem” with the Tree-Ring-Width Chronologies
4.5. Doubts Regarding the Global Surface Temperature Revised Records
4.6. Natural Climate Variability and Oscillations
5. Discussion and Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model Name | ECS 1 | TCR 1 | ECS-150 2 | ECS-130 2 | TCR 2 |
---|---|---|---|---|---|
(C) | (C) | (C) | (C) | (C) | |
ACCESS-CM2 | 4.72 | 2.10 | 4.66 | 5.40 | 1.96 |
ACCESS-ESM1-5 | 3.87 | 1.95 | 3.88 | 4.90 | 1.97 |
AWI-CM-1-1-MR | 3.16 | 2.06 | 3.16 | 3.29 | 2.03 |
BCC-CSM2-MR | 3.04 | 1.72 | 3.02 | 3.50 | 1.55 |
CAMS-CSM1-0 | 2.29 | 1.73 | 2.29 | 2.31 | 1.73 |
CESM2 | 5.16 | 2.06 | 5.15 | 6.43 | 2.00 |
CESM2-WACCM | 4.75 | 1.98 | 4.68 | 5.49 | 1.91 |
CIESM | 2.39 | 5.63 | 6.33 | 2.25 | |
CMCC-CM2-SR5 | 3.52 | 2.09 | 3.56 | 3.53 | 2.14 |
CMCC-ESM2 | 3.58 | 3.55 | 1.92 | ||
CNRM-CM6-1 | 4.83 | 2.14 | 4.90 | 4.76 | 2.22 |
CNRM-CM6-1-HR | 4.28 | 2.48 | 4.34 | 4.07 | 2.46 |
CNRM-ESM2-1 | 4.76 | 1.86 | 4.79 | 4.90 | 1.83 |
CanESM5 | 5.62 | 2.74 | 5.64 | 5.76 | 2.71 |
CanESM5-CanOE | 5.62 | 2.74 | 5.64 | 5.76 | 2.71 |
EC-Earth3 | 2.30 | 4.26 | 2.30 | ||
EC-Earth3-Veg | 4.31 | 2.62 | 4.33 | 4.45 | 2.66 |
FGOALS-f3-L | 3 | 1.94 | 3.00 | 1.94 | |
FGOALS-g3 | 2.88 | 1.54 | 2.87 | 3.10 | 1.50 |
FIO-ESM-2-0 | 2.22 | 2.22 | |||
GFDL-CM4 | 3.89 | 4.40 | 2.00 | ||
GFDL-ESM4 | 2.65 | 2.63 | 1.63 | ||
GISS-E2-1-G | 2.72 | 1.80 | 2.64 | 2.63 | 1.80 |
HadGEM3-GC31-LL | 5.55 | 2.55 | 5.55 | 5.73 | 2.49 |
HadGEM3-GC31-MM | 5.42 | 2.58 | 5.43 | 5.35 | 2.60 |
IITM-ESM | 1.71 | 2.37 | 2.42 | 1.66 | |
INM-CM4-8 | 1.83 | 1.33 | 1.83 | 1.91 | 1.30 |
INM-CM5-0 | 1.92 | 1.92 | 2.02 | 1.41 | |
IPSL-CM6A-LR | 4.56 | 2.32 | 4.70 | 5.18 | 2.35 |
KACE-1-0-G | 4.48 | 1.41 | 4.75 | 2.04 | |
MCM-UA-1-0 | 3.65 | 1.94 | 3.76 | 3.97 | 1.90 |
MIROC-ES2L | 2.68 | 1.55 | 2.66 | 2.53 | 1.49 |
MIROC6 | 2.61 | 1.55 | 2.60 | 2.59 | 1.55 |
MPI-ESM1-2-HR | 2.98 | 1.66 | 2.98 | 3.34 | 1.64 |
MPI-ESM1-2-LR | 3 | 1.84 | 3.02 | 3.08 | 1.82 |
MRI-ESM2-0 | 3.15 | 1.64 | 3.13 | 3.42 | 1.67 |
NESM3 | 4.72 | 2.72 | 4.72 | 2.72 | |
NorESM2-LM | 2.54 | 1.48 | 2.56 | 2.98 | 1.49 |
NorESM2-MM | 2.5 | 1.33 | 2.49 | 2.68 | 1.22 |
TaiESM1 | 4.31 | 2.34 | 4.36 | 4.68 | 2.27 |
UKESM1-0-LL | 5.34 | 2.79 | 5.36 | 5.49 | 2.77 |
Model Name | ECS-150 | Hist+ | Hist+ | Hist+ | Hist+ | Model Name | TCR | Hist+ | Hist+ | Hist+ | Hist+ | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1–2.6 | 2–4.5 | 3–7.0 | 5–8.5 | 1–2.6 | 2–4.5 | 3–7.0 | 5–8.5 | ||||||
(C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | ||
CanESM5 | 5.64 | 1.50 | 1.44 | 1.46 | 1.44 | 1.46 ± 0.02 | UKESM1-0-LL | 2.77 | 1.20 | 1.15 | 1.17 | 1.18 | 1.17 ± 0.02 |
CIESM | 5.63 | 0.67 | 0.75 | 0.71 | 0.71 ± 0.03 | NESM3 | 2.72 | 1.12 | 1.08 | 1.15 | 1.12 ± 0.03 | ||
HadGEM3-GC31-LL | 5.55 | 1.29 | 1.27 | 1.29 | 1.28 ± 0.01 | CanESM5 | 2.71 | 1.50 | 1.44 | 1.46 | 1.44 | 1.46 ± 0.02 | |
HadGEM3-GC31-MM | 5.43 | 0.83 | 0.87 | 0.85 ± 0.02 | CanESM5-CanOE | 2.71 | 1.11 | 1.15 | 1.22 | 1.17 | 1.16 ± 0.04 | ||
UKESM1-0-LL | 5.36 | 1.20 | 1.15 | 1.17 | 1.18 | 1.17 ± 0.02 | EC-Earth3-Veg | 2.66 | 0.74 | 0.81 | 0.79 | 0.80 | 0.79 ± 0.03 |
CanESM5-CanOE | 5.36 | 1.11 | 1.15 | 1.22 | 1.17 | 1.16 ± 0.04 | HadGEM3-GC31-MM | 2.60 | 0.83 | 0.87 | 0.85 ± 0.02 | ||
CESM2 | 5.15 | 0.78 | 0.76 | 0.76 | 0.80 | 0.77 ± 0.02 | HadGEM3-GC31-LL | 2.49 | 1.29 | 1.27 | 1.29 | 1.28 ± 0.01 | |
CNRM-CM6-1 | 4.90 | 0.69 | 0.68 | 0.65 | 0.64 | 0.67 ± 0.02 | CNRM-CM6-1-HR | 2.46 | 0.76 | 0.72 | 0.72 | 0.74 | 0.73 ± 0.02 |
CNRM-ESM2-1 | 4.79 | 0.56 | 0.55 | 0.51 | 0.58 | 0.55 ± 0.03 | IPSL-CM6A-LR | 2.35 | 0.57 | 0.71 | 0.66 | 0.58 | 0.63 ± 0.06 |
KACE-1-0-G | 4.75 | 0.87 | 0.94 | 0.85 | 0.91 | 0.89 ± 0.03 | EC-Earth3 | 2.30 | 1.20 | 1.21 | 1.17 | 1.14 | 1.18 ± 0.03 |
NESM3 | 4.72 | 1.12 | 1.08 | 1.15 | 1.12 ± 0.03 | TaiESM1 | 2.27 | 0.97 | 1.03 | 1.06 | 1.02 ± 0.04 | ||
IPSL-CM6A-LR | 4.70 | 0.57 | 0.71 | 0.66 | 0.58 | 0.63 ± 0.06 | CIESM | 2.25 | 0.67 | 0.75 | 0.71 | 0.71 ± 0.03 | |
CESM2-WACCM | 4.68 | 0.99 | 0.89 | 0.89 | 0.96 | 0.93 ± 0.04 | FIO-ESM-2-0 | 2.22 | 0.72 | 0.72 | 0.71 | 0.72 ± 0.00 | |
ACCESS-CM2 | 4.66 | 0.81 | 0.79 | 0.88 | 0.90 | 0.85 ± 0.05 | CNRM-CM6-1 | 2.22 | 0.69 | 0.68 | 0.65 | 0.64 | 0.67 ± 0.02 |
TaiESM1 | 4.36 | 0.97 | 1.03 | 1.06 | 1.02 ± 0.04 | CMCC-CM2-SR5 | 2.14 | 0.72 | 0.61 | 0.69 | 0.69 | 0.68 ± 0.04 | |
CNRM-CM6-1-HR | 4.34 | 0.76 | 0.72 | 0.72 | 0.74 | 0.73 ± 0.02 | KACE-1-0-G | 2.04 | 0.87 | 0.94 | 0.85 | 0.91 | 0.89 ± 0.03 |
EC-Earth3-Veg | 4.33 | 0.74 | 0.81 | 0.79 | 0.80 | 0.79 ± 0.03 | AWI-CM-1-1-MR | 2.03 | 0.79 | 0.80 | 0.80 | 0.79 | 0.79 ± 0.01 |
EC-Earth3 | 4.26 | 1.20 | 1.21 | 1.17 | 1.14 | 1.18 ± 0.03 | CESM2 | 2.00 | 0.78 | 0.76 | 0.76 | 0.80 | 0.77 ± 0.02 |
GFDL-CM4 | 3.89 | 0.81 | 0.82 | 0.82 ± 0.00 | GFDL-CM4 | 2.00 | 0.81 | 0.82 | 0.82 ± 0.00 | ||||
ACCESS-ESM1-5 | 3.88 | 0.92 | 0.91 | 0.92 | 0.91 | 0.92 ± 0.01 | ACCESS-ESM1-5 | 1.97 | 0.92 | 0.91 | 0.92 | 0.91 | 0.92 ± 0.01 |
MCM-UA-1-0 | 3.76 | 0.72 | 0.68 | 0.65 | 0.76 | 0.70 ± 0.04 | ACCESS-CM2 | 1.96 | 0.81 | 0.79 | 0.88 | 0.90 | 0.85 ± 0.05 |
CMCC-ESM2 | 3.58 | 0.44 | 0.44 | 0.47 | 0.45 ± 0.01 | FGOALS-f3-L | 1.94 | 0.75 | 0.69 | 0.71 | 0.69 | 0.71 ± 0.02 | |
CMCC-CM2-SR5 | 3.56 | 0.72 | 0.61 | 0.69 | 0.69 | 0.68 ± 0.04 | CMCC-ESM2 | 1.92 | 0.44 | 0.44 | 0.47 | 0.45 ± 0.01 | |
AWI-CM-1-1-MR | 3.16 | 0.79 | 0.80 | 0.80 | 0.79 | 0.79 ± 0.01 | CESM2-WACCM | 1.91 | 0.99 | 0.89 | 0.89 | 0.96 | 0.93 ± 0.04 |
MRI-ESM2-0 | 3.13 | 0.75 | 0.71 | 0.73 | 0.76 | 0.74 ± 0.02 | MCM-UA-1-0 | 1.90 | 0.72 | 0.68 | 0.65 | 0.76 | 0.70 ± 0.04 |
BCC-CSM2-MR | 3.02 | 0.64 | 0.65 | 0.66 | 0.67 | 0.65 ± 0.01 | CNRM-ESM2-1 | 1.83 | 0.56 | 0.55 | 0.51 | 0.58 | 0.55 ± 0.03 |
MPI-ESM1-2-LR | 3.02 | 0.57 | 0.55 | 0.55 | 0.46 | 0.53 ± 0.04 | MPI-ESM1-2-LR | 1.82 | 0.57 | 0.55 | 0.55 | 0.46 | 0.53 ± 0.04 |
FGOALS-f3-L | 3.00 | 0.75 | 0.69 | 0.71 | 0.69 | 0.71 ± 0.02 | GISS-E2-1-G | 1.80 | 0.56 | 0.50 | 0.53 | 0.57 | 0.54 ± 0.03 |
MPI-ESM1-2-HR | 2.98 | 0.70 | 0.70 | 0.68 | 0.71 | 0.70 ± 0.01 | CAMS-CSM1-0 | 1.73 | 0.42 | 0.44 | 0.41 | 0.41 | 0.42 ± 0.01 |
FGOALS-g3 | 2.87 | 0.59 | 0.62 | 0.61 | 0.61 | 0.61 ± 0.01 | MRI-ESM2-0 | 1.67 | 0.75 | 0.71 | 0.73 | 0.76 | 0.74 ± 0.02 |
MIROC-ES2L | 2.66 | 0.53 | 0.56 | 0.53 | 0.53 | 0.54 ± 0.01 | IITM-ESM | 1.66 | 0.50 | 0.50 | 0.50 ± 0.00 | ||
GFDL-ESM4 | 2.65 | 0.69 | 0.71 | 0.68 | 0.66 | 0.69 ± 0.02 | MPI-ESM1-2-HR | 1.64 | 0.70 | 0.70 | 0.68 | 0.71 | 0.70 ± 0.01 |
GISS-E2-1-G | 2.64 | 0.56 | 0.50 | 0.53 | 0.57 | 0.54 ± 0.03 | GFDL-ESM4 | 1.63 | 0.69 | 0.71 | 0.68 | 0.66 | 0.69 ± 0.02 |
MIROC6 | 2.60 | 0.50 | 0.45 | 0.50 | 0.51 | 0.49 ± 0.02 | MIROC6 | 1.55 | 0.50 | 0.45 | 0.50 | 0.51 | 0.49 ± 0.02 |
NorESM2-LM | 2.56 | 0.71 | 0.77 | 0.77 | 0.72 | 0.74 ± 0.03 | BCC-CSM2-MR | 1.55 | 0.64 | 0.65 | 0.66 | 0.67 | 0.65 ± 0.01 |
NorESM2-MM | 2.49 | 0.75 | 0.78 | 0.68 | 0.72 | 0.73 ± 0.04 | FGOALS-g3 | 1.50 | 0.59 | 0.62 | 0.61 | 0.61 | 0.61 ± 0.01 |
IITM-ESM | 2.37 | 0.50 | 0.50 | 0.50 ± 0.00 | NorESM2-LM | 1.49 | 0.71 | 0.77 | 0.77 | 0.72 | 0.74 ± 0.03 | ||
CAMS-CSM1-0 | 2.29 | 0.42 | 0.44 | 0.41 | 0.41 | 0.42 ± 0.01 | MIROC-ES2L | 1.49 | 0.53 | 0.56 | 0.53 | 0.53 | 0.54 ± 0.01 |
INM-CM5-0 | 1.92 | 0.68 | 0.64 | 0.68 | 0.66 | 0.67 ± 0.01 | INM-CM5-0 | 1.41 | 0.68 | 0.64 | 0.68 | 0.66 | 0.67 ± 0.01 |
INM-CM4-8 | 1.83 | 0.56 | 0.54 | 0.54 | 0.60 | 0.56 ± 0.02 | INM-CM4-8 | 1.30 | 0.56 | 0.54 | 0.54 | 0.60 | 0.56 ± 0.02 |
NorESM2-MM | 1.22 | 0.75 | 0.78 | 0.68 | 0.72 | 0.73 ± 0.04 |
Model Name | ECS150 | Hist+ | Hist+ | Hist+ | Hist+ | Model Name | TCR | Hist+ | Hist+ | Hist+ | Hist+ |
---|---|---|---|---|---|---|---|---|---|---|---|
SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | ||||
(C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | (C) | ||
CanESM5 | 5.64 | 2.74 | 3.08 | 3.44 | 3.74 | UKESM1-0-LL | 2.77 | 2.44 | 2.79 | 3.13 | 3.34 |
CanESM5-CanOE | 5.64 | 2.77 | 3.28 | 3.61 | 3.78 | NESM3 | 2.72 | 2.03 | 2.22 | 2.81 | |
CIESM | 5.63 | 2.11 | 2.71 | 3.05 | CanESM5 | 2.71 | 2.74 | 3.08 | 3.44 | 3.74 | |
HadGEM3-GC31-LL | 5.55 | 2.29 | 2.61 | 3.12 | CanESM5-CanOE | 2.71 | 2.77 | 3.28 | 3.61 | 3.78 | |
HadGEM3-GC31-MM | 5.43 | 2.29 | 3.00 | EC-Earth3-Veg | 2.66 | 2.19 | 2.51 | 2.68 | 3.01 | ||
UKESM1-0-LL | 5.36 | 2.44 | 2.79 | 3.13 | 3.34 | HadGEM3-GC31-MM | 2.60 | 2.29 | 3.00 | ||
CESM2 | 5.15 | 2.16 | 2.25 | 2.28 | 2.79 | HadGEM3-GC31-LL | 2.49 | 2.29 | 2.61 | 3.12 | |
CNRM-CM6-1 | 4.90 | 1.79 | 2.00 | 2.11 | 2.43 | CNRM-CM6-1-HR | 2.46 | 2.50 | 2.64 | 2.66 | 2.94 |
CNRM-ESM2-1 | 4.79 | 1.65 | 1.95 | 2.01 | 2.25 | IPSL-CM6A-LR | 2.35 | 2.24 | 2.38 | 2.60 | 2.94 |
KACE-1-0-G | 4.75 | 2.75 | 3.04 | 3.15 | 3.38 | EC-Earth3 | 2.30 | 2.04 | 2.23 | 2.39 | 2.70 |
NESM3 | 4.72 | 2.03 | 2.22 | 2.81 | TaiESM1 | 2.27 | 2.39 | 2.42 | 2.94 | ||
IPSL-CM6A-LR | 4.70 | 2.24 | 2.38 | 2.60 | 2.94 | CIESM | 2.25 | 2.11 | 2.71 | 3.05 | |
CESM2-WACCM | 4.68 | 2.22 | 2.42 | 2.35 | 2.82 | FIO-ESM-2-0 | 2.22 | 2.20 | 2.49 | 2.81 | |
ACCESS-CM2 | 4.66 | 2.26 | 2.39 | 2.39 | 2.64 | CNRM-CM6-1 | 2.22 | 1.79 | 2.00 | 2.11 | 2.43 |
TaiESM1 | 4.36 | 2.39 | 2.42 | 2.94 | CMCC-CM2-SR5 | 2.14 | 2.44 | 2.47 | 2.56 | 2.85 | |
CNRM-CM6-1-HR | 4.34 | 2.50 | 2.64 | 2.66 | 2.94 | KACE-1-0-G | 2.04 | 2.75 | 3.04 | 3.15 | 3.38 |
EC-Earth3-Veg | 4.33 | 2.19 | 2.51 | 2.68 | 3.01 | AWI-CM-1-1-MR | 2.03 | 2.00 | 2.33 | 2.46 | 2.53 |
EC-Earth3 | 4.26 | 2.04 | 2.23 | 2.39 | 2.70 | CESM2 | 2.00 | 2.16 | 2.25 | 2.28 | 2.79 |
GFDL-CM4 | 3.89 | 2.06 | 2.47 | GFDL-CM4 | 2.00 | 2.06 | 2.47 | ||||
ACCESS-ESM1-5 | 3.88 | 1.75 | 2.17 | 2.05 | 2.48 | ACCESS-ESM1-5 | 1.97 | 1.75 | 2.17 | 2.05 | 2.48 |
MCM-UA-1-0 | 3.76 | 2.12 | 2.29 | 2.44 | 2.88 | ACCESS-CM2 | 1.96 | 2.26 | 2.39 | 2.39 | 2.64 |
CMCC-ESM2 | 3.58 | 2.46 | 2.40 | 2.67 | FGOALS-f3-L | 1.94 | 1.95 | 2.24 | 2.46 | 2.58 | |
CMCC-CM2-SR5 | 3.56 | 2.44 | 2.47 | 2.56 | 2.85 | CMCC-ESM2 | 1.92 | 2.46 | 2.40 | 2.67 | |
AWI-CM-1-1-MR | 3.16 | 2.00 | 2.33 | 2.46 | 2.53 | CESM2-WACCM | 1.91 | 2.22 | 2.42 | 2.35 | 2.82 |
MRI-ESM2-0 | 3.13 | 1.80 | 2.06 | 2.21 | 2.44 | MCM-UA-1-0 | 1.90 | 2.12 | 2.29 | 2.44 | 2.88 |
BCC-CSM2-MR | 3.02 | 1.66 | 1.81 | 2.12 | 2.31 | CNRM-ESM2-1 | 1.83 | 1.65 | 1.95 | 2.01 | 2.25 |
MPI-ESM1-2-LR | 3.02 | 1.64 | 1.85 | 2.09 | 2.08 | MPI-ESM1-2-LR | 1.82 | 1.64 | 1.85 | 2.09 | 2.08 |
FGOALS-f3-L | 3.00 | 1.95 | 2.24 | 2.46 | 2.58 | GISS-E2-1-G | 1.80 | 1.77 | 1.88 | 1.90 | 2.16 |
MPI-ESM1-2-HR | 2.98 | 1.56 | 1.80 | 1.95 | 2.00 | CAMS-CSM1-0 | 1.73 | 1.18 | 1.50 | 1.59 | 1.71 |
FGOALS-g3 | 2.87 | 1.41 | 1.81 | 2.13 | 2.15 | MRI-ESM2-0 | 1.67 | 1.80 | 2.06 | 2.21 | 2.44 |
MIROC-ES2L | 2.66 | 1.62 | 1.75 | 1.86 | 2.15 | IITM-ESM | 1.66 | 1.79 | 2.14 | ||
GFDL-ESM4 | 2.65 | 1.42 | 1.59 | 1.73 | 1.92 | MPI-ESM1-2-HR | 1.64 | 1.56 | 1.80 | 1.95 | 2.00 |
GISS-E2-1-G | 2.64 | 1.77 | 1.88 | 1.90 | 2.16 | GFDL-ESM4 | 1.63 | 1.42 | 1.59 | 1.73 | 1.92 |
MIROC6 | 2.60 | 1.35 | 1.53 | 1.73 | 1.87 | MIROC6 | 1.55 | 1.35 | 1.53 | 1.73 | 1.87 |
NorESM2-LM | 2.56 | 1.15 | 1.41 | 1.45 | 1.74 | BCC-CSM2-MR | 1.55 | 1.66 | 1.81 | 2.12 | 2.31 |
NorESM2-MM | 2.49 | 1.26 | 1.66 | 1.62 | 1.86 | FGOALS-g3 | 1.50 | 1.41 | 1.81 | 2.13 | 2.15 |
IITM-ESM | 2.37 | 1.79 | 2.14 | NorESM2-LM | 1.49 | 1.15 | 1.41 | 1.45 | 1.74 | ||
CAMS-CSM1-0 | 2.29 | 1.18 | 1.50 | 1.59 | 1.71 | MIROC-ES2L | 1.49 | 1.62 | 1.75 | 1.86 | 2.15 |
INM-CM5-0 | 1.92 | 1.63 | 1.74 | 2.09 | 2.22 | INM-CM5-0 | 1.41 | 1.63 | 1.74 | 2.09 | 2.22 |
INM-CM4-8 | 1.83 | 1.51 | 1.80 | 1.92 | 2.18 | INM-CM4-8 | 1.30 | 1.51 | 1.80 | 1.92 | 2.18 |
NorESM2-MM | 1.22 | 1.26 | 1.66 | 1.62 | 1.86 |
Model Name | ECS150 | Hist+ | Hist+ | Hist+ | Hist+ | Model Name | TCR | Hist+ | Hist+ | Hist+ | Hist+ |
---|---|---|---|---|---|---|---|---|---|---|---|
SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | ||||
(°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | ||
CanESM5 | 5.64 | 2.78 | 4.22 | 6.26 | 7.46 | UKESM1-0-LL | 2.77 | 2.73 | 4.19 | 5.94 | 7.00 |
CanESM5-CanOE | 5.64 | 2.83 | 4.31 | 6.36 | 7.56 | NESM3 | 2.72 | 1.94 | 3.02 | 5.38 | |
CIESM | 5.63 | 2.18 | 3.79 | 6.69 | CanESM5 | 2.71 | 2.78 | 4.22 | 6.26 | 7.46 | |
HadGEM3-GC31-LL | 5.55 | 2.74 | 3.92 | 6.60 | CanESM5-CanOE | 2.71 | 2.83 | 4.31 | 6.36 | 7.56 | |
HadGEM3-GC31-MM | 5.43 | 2.79 | 6.42 | EC-Earth3-Veg | 2.66 | 2.57 | 3.73 | 5.02 | 6.06 | ||
UKESM1-0-LL | 5.36 | 2.73 | 4.19 | 5.94 | 7.00 | HadGEM3-GC31-MM | 2.60 | 2.79 | 6.42 | ||
CESM2 | 5.15 | 2.33 | 3.32 | 4.52 | 6.02 | HadGEM3-GC31-LL | 2.49 | 2.74 | 3.92 | 6.60 | |
CNRM-CM6-1 | 4.90 | 2.05 | 3.22 | 4.57 | 5.91 | CNRM-CM6-1-HR | 2.46 | 2.80 | 3.92 | 4.98 | 6.17 |
CNRM-ESM2-1 | 4.79 | 2.13 | 3.22 | 4.37 | 5.46 | IPSL-CM6A-LR | 2.35 | 2.27 | 3.61 | 4.98 | 6.41 |
KACE-1-0-G | 4.75 | 2.89 | 3.67 | 5.08 | 6.02 | EC-Earth3 | 2.30 | 2.06 | 3.24 | 4.54 | 5.65 |
NESM3 | 4.72 | 1.94 | 3.02 | 5.38 | TaiESM1 | 2.27 | 3.79 | 4.87 | 6.02 | ||
IPSL-CM6A-LR | 4.70 | 2.27 | 3.61 | 4.98 | 6.41 | CIESM | 2.25 | 2.18 | 3.79 | 6.69 | |
CESM2-WACCM | 4.68 | 2.45 | 3.33 | 4.52 | 6.07 | FIO-ESM-2-0 | 2.22 | 2.15 | 3.38 | 5.83 | |
ACCESS-CM2 | 4.66 | 2.54 | 3.50 | 4.76 | 5.83 | CNRM-CM6-1 | 2.22 | 2.05 | 3.22 | 4.57 | 5.91 |
TaiESM1 | 4.36 | 3.79 | 4.87 | 6.02 | CMCC-CM2-SR5 | 2.14 | 2.90 | 3.74 | 4.38 | 5.59 | |
CNRM-CM6-1-HR | 4.34 | 2.80 | 3.92 | 4.98 | 6.17 | KACE-1-0-G | 2.04 | 2.89 | 3.67 | 5.08 | 6.02 |
EC-Earth3-Veg | 4.33 | 2.57 | 3.73 | 5.02 | 6.06 | AWI-CM-1-1-MR | 2.03 | 1.94 | 2.99 | 4.19 | 4.97 |
EC-Earth3 | 4.26 | 2.06 | 3.24 | 4.54 | 5.65 | CESM2 | 2.00 | 2.33 | 3.32 | 4.52 | 6.02 |
GFDL-CM4 | 3.89 | 3.01 | 4.98 | GFDL-CM4 | 2.00 | 3.01 | 4.98 | ||||
ACCESS-ESM1-5 | 3.88 | 2.00 | 3.11 | 4.13 | 4.86 | ACCESS-ESM1-5 | 1.97 | 2.00 | 3.11 | 4.13 | 4.86 |
MCM-UA-1-0 | 3.76 | 2.17 | 3.17 | 4.23 | 5.13 | ACCESS-CM2 | 1.96 | 2.54 | 3.50 | 4.76 | 5.83 |
CMCC-ESM2 | 3.58 | 3.68 | 4.36 | 5.49 | FGOALS-f3-L | 1.94 | 1.94 | 2.88 | 4.04 | 4.87 | |
CMCC-CM2-SR5 | 3.56 | 2.90 | 3.74 | 4.38 | 5.59 | CMCC-ESM2 | 1.92 | 3.68 | 4.36 | 5.49 | |
AWI-CM-1-1-MR | 3.16 | 1.94 | 2.99 | 4.19 | 4.97 | CESM2-WACCM | 1.91 | 2.45 | 3.33 | 4.52 | 6.07 |
MRI-ESM2-0 | 3.13 | 1.67 | 2.71 | 3.75 | 4.58 | MCM-UA-1-0 | 1.90 | 2.17 | 3.17 | 4.23 | 5.13 |
BCC-CSM2-MR | 3.02 | 1.50 | 2.54 | 3.83 | 4.14 | CNRM-ESM2-1 | 1.83 | 2.13 | 3.22 | 4.37 | 5.46 |
MPI-ESM1-2-LR | 3.02 | 1.64 | 2.47 | 3.52 | 4.28 | MPI-ESM1-2-LR | 1.82 | 1.64 | 2.47 | 3.52 | 4.28 |
FGOALS-f3-L | 3.00 | 1.94 | 2.88 | 4.04 | 4.87 | GISS-E2-1-G | 1.80 | 1.67 | 2.43 | 3.35 | 4.14 |
MPI-ESM1-2-HR | 2.98 | 1.53 | 2.41 | 3.54 | 4.17 | CAMS-CSM1-0 | 1.73 | 1.25 | 1.98 | 2.88 | 3.28 |
FGOALS-g3 | 2.87 | 1.40 | 2.26 | 3.49 | 3.80 | MRI-ESM2-0 | 1.67 | 1.67 | 2.71 | 3.75 | 4.58 |
MIROC-ES2L | 2.66 | 1.55 | 2.53 | 3.34 | 4.29 | IITM-ESM | 1.66 | 2.34 | 3.76 | ||
GFDL-ESM4 | 2.65 | 1.38 | 2.28 | 3.43 | 3.94 | MPI-ESM1-2-HR | 1.64 | 1.53 | 2.41 | 3.54 | 4.17 |
GISS-E2-1-G | 2.64 | 1.67 | 2.43 | 3.35 | 4.14 | GFDL-ESM4 | 1.63 | 1.38 | 2.28 | 3.43 | 3.94 |
MIROC6 | 2.60 | 1.40 | 2.18 | 3.10 | 3.99 | MIROC6 | 1.55 | 1.40 | 2.18 | 3.10 | 3.99 |
NorESM2-LM | 2.56 | 1.28 | 2.14 | 2.98 | 3.92 | BCC-CSM2-MR | 1.55 | 1.50 | 2.54 | 3.83 | 4.14 |
NorESM2-MM | 2.49 | 1.39 | 2.13 | 3.16 | 3.98 | FGOALS-g3 | 1.50 | 1.40 | 2.26 | 3.49 | 3.80 |
IITM-ESM | 2.37 | 2.34 | 3.76 | NorESM2-LM | 1.49 | 1.28 | 2.14 | 2.98 | 3.92 | ||
CAMS-CSM1-0 | 2.29 | 1.25 | 1.98 | 2.88 | 3.28 | MIROC-ES2L | 1.49 | 1.55 | 2.53 | 3.34 | 4.29 |
INM-CM5-0 | 1.92 | 1.49 | 2.40 | 3.40 | 3.88 | INM-CM5-0 | 1.41 | 1.49 | 2.40 | 3.40 | 3.88 |
INM-CM4-8 | 1.83 | 1.43 | 2.29 | 3.40 | 3.94 | INM-CM4-8 | 1.30 | 1.43 | 2.29 | 3.40 | 3.94 |
NorESM2-MM | 1.22 | 1.39 | 2.13 | 3.16 | 3.98 |
GCM | 1850–1899 to 2045–2055 | 1850–1899 to 2090–2100 | |||||||
---|---|---|---|---|---|---|---|---|---|
Sub-Ensemble | Hist-SSP1-2.6 | Hist-SSP2-4.5 | Hist-SSP3-7.0 | Hist-SSP5-8.5 | Hist-SSP1-2.6 | Hist-SSP2-4.5 | Hist-SSP3-7.0 | Hist-SSP5-8.5 | |
ECS150 | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) |
(3) high | 4.66–5.64 | 1.65–2.77 | 1.95–3.28 | 2.01–3.61 | 2.25–3.78 | 1.94–2.89 | 3.02–4.31 | 4.37–6.36 | 5.38–7.56 |
(2) medium | 3.02–4.36 | 1.64–2.50 | 1.85–2.64 | 2.05–2.68 | 2.08–3.01 | 1.64–2.90 | 2.47–3.92 | 3.52–5.02 | 4.28–6.17 |
(1) low | 1.83–3.02 | 1.15–1.95 | 1.41–2.24 | 1.45–2.46 | 1.71–2.58 | 1.25–1.94 | 1.98–2.88 | 2.88–4.04 | 3.28–4.87 |
TCR | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) | (°C) |
(3) high | 2.46–2.77 | 2.03–2.77 | 2.22–3.28 | 2.66–3.61 | 2.81–3.78 | 1.94–2.83 | 3.02–4.31 | 4.98–6.36 | 5.38–7.56 |
(2) medium | 1.90–2.35 | 1.75–2.75 | 2.00–3.04 | 2.05–3.15 | 2.43–3.38 | 1.94–2.90 | 2.88–3.79 | 4.04–5.08 | 4.86–6.69 |
(1) low | 1.22–1.83 | 1.15–1.80 | 1.41–2.06 | 1.45–2.21 | 1.71–2.44 | 1.25–2.13 | 1.98–3.22 | 2.88–4.37 | 3.28–5.46 |
Temperature Anomaly (°C, 1850–1900) | Trend (°C/Year) | |||||||
---|---|---|---|---|---|---|---|---|
1960–1980 | 1980–1990 | 1990–2000 | 2000–2010 | 2004–2014 | 2011–2021 | 2000–2014 | 2000–2021 | |
HadCRUT5 (infilled data) | 0.28 | 0.53 | 0.68 | 0.89 | 0.94 | 1.12 | 0.014 | 0.022 |
HadCRUT5 (non infilled data) | 0.24 | 0.49 | 0.65 | 0.83 | 0.87 | 1.04 | 0.010 | 0.019 |
HadCRUT4 | 0.25 | 0.42 | 0.59 | 0.78 | 0.81 | 0.95 | 0.008 | 0.016 |
HadCRUT3 | 0.24 | 0.43 | 0.58 | 0.76 | 0.76 | 0.003 |
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p, Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 8 February 2023). [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p, Available online: https://www.ipcc.ch/assessment-report/ar5/ (accessed on 8 February 2023).
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 2391p, Available online: https://report.ipcc.ch/ar6wg1/ (accessed on 8 February 2023). [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Hausfather, Z.; Marvel, K.; Schmidt, G.A.; Nielsen-Gammon, J.W.; Zelinka, M. Climate simulations: Recognize the ‘hot model’ problem. Nature 2022, 605, 26–29. [Google Scholar] [CrossRef] [PubMed]
- McKitrick, R.; Christy, J. A test of the tropical 200 to 300 hPa warming rate in climate models. Earth Space Sci. 2018, 5, 529–536. [Google Scholar] [CrossRef]
- McKitrick, R.; Christy, J. Pervasive warming bias in CMIP6 tropospheric layers. Earth Space Sci. 2020, 7, e2020EA001281. [Google Scholar] [CrossRef]
- Mitchell, D.M.; Lo, Y.T.E.; Seviour, W.J.M.; Haimberger, L.; Polvani, L.M. The vertical profile of recent tropical temperature trends: Persistent model biases in the context of internal variability. Environ. Res. Lett. 2020, 15, 1040b4. [Google Scholar] [CrossRef]
- Nijsse, F.J.M.M.; Cox, P.M.; Williamson, M.S. Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models. Earth Syst. Dyn. 2020, 11, 737–750. [Google Scholar] [CrossRef]
- Scafetta, N. Testing the CMIP6 GCM Simulations versus Surface Temperature Records from 1980–1990 to 2011–2021: High ECS Is Not Supported. Climate 2021, 9, 161. [Google Scholar] [CrossRef]
- Scafetta, N. Reconstruction of the Interannual to Millennial Scale Patterns of the Global Surface Temperature. Atmosphere 2021, 12, 147. [Google Scholar] [CrossRef]
- Scafetta, N. CMIP6 GCM ensemble members versus global surface temperatures. Clim. Dyn. 2022, 1–30. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Stolpe, M.B.; Sippel, S.; Fischer, E.M.; Smith, C.J.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6, eaaz9549. [Google Scholar] [CrossRef]
- Voosen, P. New climate models predict a warming surge: Scientists question whether stronger anticipated response to greenhouse gases is realistic. Science 2019. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Zhu, J.; Poulsen, C.J.; Otto-Bliesner, B.L. High climate sensitivity in CMIP6 model not supported by paleoclimate. Nat. Clim. Chang. 2020, 10, 378–379. [Google Scholar] [CrossRef]
- Lewis, N. Objectively combining climate sensitivity evidence. Clim. Dyn. 2022, 1–27. [Google Scholar] [CrossRef]
- Scafetta, N. Advanced testing of low, medium, and high ECS CMIP6 GCM simulations versus ERA5-T2m. Geophys. Res. Lett. 2022, 49, e2022GL097716. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Webb, M.J.; Annan, J.D.; Armour, K.C.; Forster, P.M.; Hargreaves, J.C.; Hegerl, G.; Klein, S.A.; Marvel, K.D.; Rohling, E.J.; et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 2020, 58, e2019RG000678. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Quat. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Simmons, A.; Hersbach, H.; Munoz-Sabater, J.; Nicolas, J.; Vamborg, F.; Berrisford, P.; de Rosnay, P.; Willett, K.; Woollen, J. Low frequency variability and trends in surface air temperature and humidity from ERA5 and other datasets. ECMWF 2021. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Atmos. 2021, 126, e2019JD032361. [Google Scholar] [CrossRef]
- Lenssen, N.J.L.; Schmidt, G.A.; Hansen, J.E.; Menne, M.J.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP uncertainty model. J. Geophys. Atmos. 2019, 124, 6307–6326. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Lawrimore, J.H.; Huang, B.; Menne, M.J.; Yin, X.; Sánchez-Lugo, A.; Gleason, B.E.; Vose, R.; Arndt, D.; Rennie, J.J.; et al. Updated temperature data give a sharper view of climate trends. Eos 2019, 100. [Google Scholar] [CrossRef]
- Ishihara, K. Calculation of global surface temperature anomalies with COBE-SST. Weather Serv. Bull. 2006, 73, S19–S25. [Google Scholar]
- Rohde, R.A.; Hausfather, Z. The Berkeley Earth Land/Ocean Temperature Record. Earth Syst. Sci. Data 2020, 12, 3469–3479. [Google Scholar] [CrossRef]
- Connolly, R.; Soon, W.; Connolly, M.; Baliunas, S.; Berglund, J.; Butler, C.J.; Cionco, R.G.; Elias, A.G.; Fedorov, V.M.; Harde, H.; et al. How much has the Sun influenced Northern hemisphere temperature trends? An ongoing debate. Res. Astron. Astrophys. 2021, 21, 131. [Google Scholar] [CrossRef]
- Scafetta, N. Detection of non-climatic biases in land surface temperature records by comparing climatic data and their model simulations. Clim. Dyn. 2021, 56, 2959–2982. [Google Scholar] [CrossRef]
- Spencer, R.W.; Christy, J.R.; Braswell, W.D. UAH Version 6 global satellite temperature products: Methodology and results. Asia-Pac. J. Atmos. Sci. 2017, 53, 121–130. [Google Scholar] [CrossRef]
- Scafetta, N. Discussion on climate oscillations: CMIP5 general circulation models versus a semiempirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 2013, 126, 321–357. [Google Scholar] [CrossRef]
- Scafetta, N. Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos.-Sol.-Terr. Phys. 2010, 72, 951–970. [Google Scholar] [CrossRef]
- Loehle, C. A minimal model for estimating climate sensitivity. Ecol. Model. 2014, 276, 80–84. [Google Scholar] [CrossRef]
- Durre, I.; Yin, X. Enhancements of the Dataset of Sounding Parameters Derived from the Integrated Global Radiosonde Archive. In Proceedings of the 23rd Conference on Climate Variability and Change, Seattle, WA, USA, 25 January 2011; Available online: https://ams.confex.com/ams/91Annual/webprogram/Paper179437.html (accessed on 8 February 2023).
- Christy, J.R.; Spencer, R.W.; Braswell, W.D.; Junod, R. Examination of space-based bulk atmospheric temperatures used in climate research. Int. J. Remote Sens. 2018, 39, 3580–3607. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J. Sensitivity of Satellite-Derived Tropospheric Temperature Trends to the Diurnal Cycle Adjustment. J. Clim. 2016, 29, 3629–3646. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Wang, W. Intersatellite Calibration of AMSU-A Observations for Weather and Climate Applications. J. Geophys. Res. 2011, 116, D23113. [Google Scholar] [CrossRef]
- Po-Chedly, S.; Thorsen, T.J.; Fu, Q. Removing Diurnal Cycle Contamination in Satellite-Derived Tropospheric Temperatures. Understanding Tropical Tropospheric Trend Discrepancies. J. Clim. 2015, 28, 2274–2290. [Google Scholar] [CrossRef]
- Spencer, R.W. UAH, RSS, NOAA, UW: Which Satellite Dataset Should We Believe? 23 April 2019. Available online: https://www.drroyspencer.com/2019/04/uah-rss-noaa-uw-which-satellite-dataset-should-we-believe/ (accessed on 8 February 2023).
- Christy, J.; McNider, R. Satellite Bulk Tropospheric Temperatures as a Metric for Climate Sensitivity. Asia-Pac. J. Atmos. Sci. 2017, 53, 511–518. [Google Scholar] [CrossRef]
- Scafetta, N.; Ouyang, S. Detection of UHI bias in China climate network using Tmin and Tmax surface temperature divergence. Glob. Planet Chang. 2019, 181, 102989. [Google Scholar] [CrossRef]
- Watts, A. Corrupted Climate Stations: The Official U.S. Temperature Record Remains Fatally Flawed; The Heartland Institute: Arlington Heights, IL, USA, 2022; Available online: https://heartland.org/wp-content/uploads/documents/2022_Surface_Station_Report.pdf (accessed on 8 February 2023).
- D’Aleo, J.S. A critical look at surface temperature records. In Evidence-Based Climate Science, 2nd ed.; Easterbrook, D.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 11–48. [Google Scholar] [CrossRef]
- McKitrick, R.R.; Michaels, P.J. Quantifying the influence of anthropogenic surface processes and inhomogeneities on gridded global climate data. J. Geophys. Res. 2007, 112, D24S09. [Google Scholar] [CrossRef]
- Soon, W.-H.; Connolly, R.; Connolly, M.; O’Neill, P.; Zheng, J.; Ge, Q.; Hao, Z.; Yan, H. Comparing the current and early 20th century warm periods in China. Earth Sci. Rev. 2018, 185, 80–101. [Google Scholar] [CrossRef]
- Kim, D.; Christy, J.R. Detecting impacts of surface development near weather stations since 1895 in the San Joaquin Valley of California. Theor. Appl. Climatol. 2022, 149, 1223–1238. [Google Scholar] [CrossRef]
- Osborn, T.J.; Jones, P.D.; Lister, D.H.; Morice, C.P.; Simpson, I.R.; Winn, J.P.; Hogan, E.; Harris, I.C. Land surface air temperature variations across the globe updated to 2019: The CRUTEM5 dataset. J. Geophys. Res. 2021, 126, e2019JD032352. [Google Scholar] [CrossRef]
- Kennedy, J.J.; Rayner, N.A.; Atkinson, C.P.; Killick, R.E. An ensemble data set of sea-surface temperature change from 1850: The Met Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophys. Res. Atmos. 2019, 124, 7719–7763. [Google Scholar] [CrossRef]
- Esper, J.; St. George, S.; Anchukaitis, K.; D’Arrigo, R.; Ljungqvist, F.C.; Luterbacher, J.; Schneider, L.; Stoffel, M.; Wilson, R.; Büntgen, U. Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 2018, 50, 81–90. [Google Scholar] [CrossRef]
- Büntgen, U.; Allen, K.; Anchukaitis, K.J.; Arseneault, D.; Boucher, E.; Bräuning, A.; Chatterjee, S.; Cherubini, P.; Churakova, O.V.; Corona, C.; et al. The influence of decision-making in tree ring-based climate reconstructions. Nat. Commun. 2021, 12, 3411. [Google Scholar] [CrossRef]
- Brohan, P.; Kennedy, J.J.; Harris, I.; Tett, S.F.B.; Jones, P.D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 2006, 111, D12106. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res. 2012, 117, D08101. [Google Scholar] [CrossRef]
- Wyatt, M.; Curry, J. Role of Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Clim. Dyn. 2014, 42, 2763–2782. [Google Scholar] [CrossRef]
- Scafetta, N.; Willson, R.C.; Lee, J.N.; Wu, D.L. Modeling Quiet Solar Luminosity Variability from TSI Satellite Measurements and Proxy Models during 1980–2018. Remote Sens. 2019, 11, 2569. [Google Scholar] [CrossRef]
- Scafetta, N.; Bianchini, A. The Planetary Theory of Solar Activity Variability: A Review. Front. Astron. Space Sci. 2022, 9, 937930. [Google Scholar] [CrossRef]
- Lewis, N.; Curry, J. The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity. J. Clim. 2018, 31, 6051–6071. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Choi, Y.-S. On the observational determination of climate sensitivity and its implications. Asia-Pac. J. Atmos. Sci. 2011, 47, 377–390. [Google Scholar] [CrossRef]
- Monckton, C.; Soon, W.W.H.; Legates, D.R.; Briggs, W.M. Why models run hot: Results from an irreducibly simple climate model. Sci. Bull. 2015, 60, 122–135. [Google Scholar] [CrossRef]
- Bates, J.R. Estimating climate sensitivity using two-zone energy balance models. Earth Space Sci. 2016, 3, 207–225. [Google Scholar] [CrossRef]
- Stefani, F. Solar and Anthropogenic Influences on Climate: Regression Analysis and Tentative Predictions. Climate 2021, 9, 163. [Google Scholar] [CrossRef]
- Omrani, N.E.; Keenlyside, N.; Matthes, K.; Boljka, L.; Zanchettin, D.; Jungclaus, J.H.; Lubis, S.W. Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. NPJ Clim. Atmos. Sci. 2022, 5, 59. [Google Scholar] [CrossRef]
- Connolly, R.; Connolly, M.; Soon, W.; Legates, D.R.; Cionco, R.G.; Velasco Herrera, V.M. Northern Hemisphere Snow-Cover Trends (1967–2018): A Comparison between Climate Models and Observations. Geosciences 2019, 9, 135. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scafetta, N. CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment. Atmosphere 2023, 14, 345. https://doi.org/10.3390/atmos14020345
Scafetta N. CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment. Atmosphere. 2023; 14(2):345. https://doi.org/10.3390/atmos14020345
Chicago/Turabian StyleScafetta, Nicola. 2023. "CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment" Atmosphere 14, no. 2: 345. https://doi.org/10.3390/atmos14020345
APA StyleScafetta, N. (2023). CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment. Atmosphere, 14(2), 345. https://doi.org/10.3390/atmos14020345