Spatiotemporal Variations in PM2.5 Concentration in Different Areas of Bus Cabin: A Case Study in Shenzhen, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Route
2.2. Experimental Design
2.3. In-Cabin Measurements
2.4. Data Preprocessing
2.5. Statistical Analyses
3. Results and Discussion
3.1. General Comparison of PM2.5 Concentrations among FA, MA, and RA
3.2. Spatial Variations in PM2.5 Concentration along Trip Routes
3.3. Temporal Variations in PM2.5 Concentrations within Route Segments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Level | Description |
---|---|
1 | Few passengers. |
2 | About half of the seats are taken by passengers. |
3 | All seats are taken by passengers, with few standing passengers. |
4 | Many standing passengers but can move at will. |
5 | Crowded with standing passengers and it is difficult to move. |
References
- Sustainable Transport. Available online: https://sdgs.un.org/topics/sustainable-transport (accessed on 24 May 2022).
- Chan, A.T. Commuter exposure and indoor-outdoor relationships of carbon oxides in buses in Hong Kong. Atmos. Environ. 2003, 37, 3809–3815. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, L.; Wang, X.; Zhang, Y. Air quality and passenger comfort in an air-conditioned bus micro-environment. Environ. Monit. Assess. 2018, 190, 276. [Google Scholar] [CrossRef]
- Keskin, S.S.; Dilmac, E. Indoor air particulate matter exposure of commuter bus passengers in Istanbul, Turkey. Indoor Built Environ. 2017, 26, 337–346. [Google Scholar] [CrossRef]
- Jiao, L.D.; Shen, L.Y.; Shuai, C.Y.; He, B. A novel approach for assessing the performance of sustainable urbanization based on structural equation modeling: A China case study. Sustainability 2016, 8, 910. [Google Scholar] [CrossRef]
- Xu, H.; Jiao, L.D.; Chen, S.L.; Deng, M.L.; Shen, N.X. An innovative approach to determining high-risk nodes in a complex urban rail transit station: A perspective of promoting urban sustainability. Sustainability 2018, 10, 2456. [Google Scholar] [CrossRef]
- Okokon, E.O.; Taimisto, P.; Turunen, A.W.; Amoda, O.A.; Fasasi, A.E.; Adeyemi, L.G.; Juutilainen, J.; Lanki, T. Particulate air pollution and noise: Assessing commuter exposure in Africa’s most populous city. J. Transp. Health 2018, 9, 150–160. [Google Scholar] [CrossRef]
- Chaney, R.A.; Sloan, C.D.; Cooper, V.C.; Robinson, D.R.; Hendrickson, N.R.; McCord, T.A.; Johnston, J.D. Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway. PLoS ONE 2017, 12, e0188053. [Google Scholar] [CrossRef]
- Knibbs, L.D.; Cole-Hunter, T.; Morawska, L. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 2011, 45, 2611–2622. [Google Scholar] [CrossRef]
- Velasco, E.; Segovia, E. Determining a commuters’ exposure to particle and noise pollution on double-decker buses. Aerosol Air Qual. Res. 2021, 21, 210165. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.J.; Hao, J.M.; Liu, H.; Wu, X.M.; Hu, J.N.; Walsh, M.P.; Wallington, T.J.; Zhang, K.M.; Stevanovic, S. On-road vehicle emissions and their control in China: A review and outlook. Sci. Total Environ. 2018, 574, 332–349. [Google Scholar] [CrossRef]
- Huang, J.; Deng, F.R.; Wu, S.W.; Guo, X.B. Comparisons of personal exposure to PM2.5 and CO by different commuting modes in Beijing, China. Sci. Total Environ. 2012, 425, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, S.S.R.; Patra, A.K. Personal exposures to PM during short distance highway travel in India. Transp. Res. D Transp. Environ. 2020, 81, 102315. [Google Scholar] [CrossRef]
- Yang, F.H.; Kaul, D.; Wong, K.C.; Westerdahl, D.; Sun, L.; Ho, K.F.; Tian, L.W.; Brimblecombe, P.; Ning, Z. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos. Environ. 2015, 109, 42–51. [Google Scholar] [CrossRef]
- Mahesh, S. Exposure to fine particulate matter (PM2.5) and noise at bus stops in Chennai, India. J. Transp. Health 2021, 22, 101105. [Google Scholar] [CrossRef]
- Zhu, S.W.; Demokritou, P.; Spengler, J. Experimental and numerical investigation of micro-environmental conditions in public transportation buses. Build. Environ. 2010, 45, 2077–2088. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.C.; Lin, C.H.; Chen, Q.Y. Numerical modeling of volatile organic compound emissions from ozone reactions with human-worn clothing in an aircraft cabin. HVACR Res. 2014, 8, 922–931. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.D.; Guan, J.; Li, Z.; Gap, K. Source apportionment of volatile organic compounds (VOCs) in aircraft cabins. Build. Environ. 2014, 81, 1–6. [Google Scholar] [CrossRef]
- You, R.Y.; Cui, W.L.; Chen, C.; Zhao, B. Measuring the short-term emission rates of particles in the "Personal Cloud" with different clothes and activity intensities in a sealed chamber. Aerosol Air Qual. Res. 2013, 13, 911–921. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.W.; Pope, C.A.; Dockery, D.W.; Wang, Y.; Ezzati, M.; Dominici, F. Effect of air pollution control on life expectancy in the United States: An analysis of 545 US counties for the period from 2000 to 2007. Epidemiology 2013, 24, 23–31. [Google Scholar] [CrossRef]
- Yang, B.Y.; Fan, S.J.; Thiering, E.; Seissler, J.; Nowak, D.; Dong, G.H.; Heinrich, J. Ambient air pollution and diabetes: A systematic review and meta-analysis. Environ. Res. 2020, 180, 108817. [Google Scholar] [CrossRef]
- WHO. Global Air Quality Guidelines (AQG). Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 11 January 2023).
- Cepeda, M.; Schoufour, J.; Freak-Poli, R.; Koolhaas, C.M.; Dhana, K.; Bramer, W.M.; Franco, O.H. Levels of ambient air pollution according to mode of transport: A systematic review. Lancet Public Health 2017, 2, e23–e34. [Google Scholar] [CrossRef]
- Cha, Y.Y.; Hedberg, Y.; Mei, N.X.; Olofsson, U. Airborne wear particles generated from conductor rail and collector shoe contact: Influence of sliding velocity and particle size. Tribol. Lett. 2016, 64, 40. [Google Scholar] [CrossRef]
- Lu, F.; Xu, D.Q.; Cheng, Y.B.; Dong, S.X.; Guo, C.; Jiang, X.; Zheng, X.Y. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ. Res. 2015, 136, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Maroko, A.R. Using air dispersion modeling and proximity analysis to assess chronic exposure to fine particulate matter and environmental justice in New York City. Appl. Geograph. 2012, 34, 533–547. [Google Scholar] [CrossRef]
- de Nazelle, A.; Bode, O.; Orjuela, J.P. Comparison of air pollution exposures in active vs. passive travel modes in European cities: A quantitative review. Environ. Int. 2017, 99, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.L.; Lin, M.; Chan, C.Y.; Li, W.Z.; Tao, J.; Li, Y.P.; Sang, X.F.; Bu, C.W. Influences of Commuting Mode, Air Conditioning Mode and Meteorological Parameters on Fine Particle (PM2.5) Exposure Levels in Traffic Microenvironments. Aerosol Air Qual. Res. 2013, 13, 709–720. [Google Scholar] [CrossRef]
- Xu, B.; Hao, J. Air quality inside subway metro indoor environment worldwide: A review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Wen, S. Spatiotemporal variations of in-cabin particle concentrations along public transit routes, a case study in Shenzhen, China. Build. Environ. 2020, 180, 107047. [Google Scholar] [CrossRef]
- Karanasiou, A.; Viana, M.; Querol, X.; Moreno, T.; de Leeuw, F. Assessment of personal exposure to particulate air pollution during commuting in European cities-recommendations and policy implications. Sci. Total Environ. 2014, 490, 785–797. [Google Scholar] [CrossRef]
- Sloan, C.D.; Philipp, T.J.; Bradshaw, R.K.; Chronister, S.; Barber, W.B.; Johnston, J.D. Applications of GPS-tracked personal and fixed-location PM2.5 continuous exposure monitoring. J. Air Waste Manag. Assoc. 2016, 66, 53–65. [Google Scholar] [CrossRef]
- Belalcazar-Ceron, L.C.; Davila, P.; Rojas, A.; Guevara-Luna, M.A.; Acevedo, H.; Rojas, N. Effects of fuel change to electricity on PM2.5 local levels in the Bus Rapid Transit System of Bogota. Environ. Sci. Pollut. Res. 2021, 28, 68642–68656. [Google Scholar] [CrossRef]
- Apparicio, P.; Gelb, J.; Carrier, M.; Mathieu, M.E.; Kingham, S. Exposure to noise and air pollution by mode of transportation during rush hours in Montreal. J. Transp. Geogr. 2018, 70, 182–192. [Google Scholar] [CrossRef]
- Kumar, P.; Patton, A.P.; Durant, J.L.; Frey, H.C. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos. Environ. 2018, 187, 301–316. [Google Scholar] [CrossRef]
- Shen, J.L.; Gao, Z. Commuter exposure to particulate matters in four common transportation modes in Nanjing. Build. Environ. 2019, 156, 156–170. [Google Scholar] [CrossRef]
- Wong, L.T.; Mui, K.W.; Cheung, C.T.; Chan, W.Y.; Lee, Y.H.; Cheung, C.L. In-cabin exposure levels of carbon monoxide, carbon dioxide and airborne particulate matter in air-conditioned buses of Hong Kong. Indoor Built Environ. 2011, 20, 464–470. [Google Scholar] [CrossRef]
- Madl, P.; Majid, H.; Kwasny, F.; Hofmann, W. In-vehicle exposure to ultrafine particles while driving through a tunnel system and associated lung deposition calculations. Aerosol Air Qual. Res. 2015, 15, 295–305. [Google Scholar] [CrossRef]
- Ecological Environment Bureau of Shenzhen Municipality. Shenzhen Air Quality. Available online: http://meeb.sz.gov.cn/ztfw/ztzl/hjbhxxgkzl/kqhjxx/kqzlzl/ (accessed on 5 February 2023).
- DustTrak™ DRX Aerosol Monitor 8534. Accurate, Reliable and Quality Instrumentation. Available online: https://tsi.com/products/aerosol-and-dust-monitors/dust-monitors/dusttrak-drx-aerosol-monitor-8534/ (accessed on 24 May 2022).
Field | Description |
---|---|
Stop name | The starting bus stop of a route segment. |
Measurement position | Position of the observer inside the bus cabin (FA/MA/RA). |
Passenger density | Level of passenger density in the observed area (level 1 to level 5 refer to the passenger density from low to high, details explained in Table A1). |
Wind strength | There is no wind, weak wind, or strong wind felt by investigators at the observation position. |
Window status | Windows in the observation area are open or closed. |
Bus location on the route segment | There are two options: (1) the start of the route segment; and (2) the end of the route segment. |
Timestamp | The time is automatically generated when the record is logged. |
Trip | Travel Time (s) | Area | Average Level of Passenger Density | Minimum Level of Passenger Density | Maximum Level of Passenger Density | Temperature (°C) | Relative Humidity (%) |
---|---|---|---|---|---|---|---|
0425-M-IT | 2170 | FA | 2.8 | 2 | 3 | 27.1 | 69.6 |
MA | 3.1 | 3 | 4 | 26.4 | 69.8 | ||
RA | 2.1 | 2 | 3 | 26.5 | 71.3 | ||
0425-M-OT | 2246 | FA | 2.0 | 2 | 2 | 26.1 | 65.1 |
MA | 3.0 | 3 | 3 | 25.1 | 67.8 | ||
RA | 2.4 | 2 | 3 | 27.5 | 65.2 | ||
0425-E-IT | 2268 | FA | 2.2 | 2 | 3 | 28.3 | 70.7 |
MA | 2.4 | 2 | 3 | 27.5 | 71.0 | ||
RA | 2.6 | 2 | 3 | 28.2 | 69.0 | ||
0425-E-OT | 2255 | FA | 2.9 | 2 | 5 | 27.4 | 67.0 |
MA | 3.1 | 3 | 5 | 25.1 | 68.5 | ||
RA | 3.2 | 3 | 4 | 26.0 | 68.9 | ||
0427-M-IT | 2283 | FA | 2.9 | 2 | 4 | 26.6 | 70.2 |
MA | 3.4 | 2 | 4 | 26.2 | 72.7 | ||
RA | 2.8 | 2 | 4 | 25.2 | 75.2 | ||
0427-M-OT | 2173 | FA | 3.0 | 3 | 3 | 26.7 | 70.9 |
MA | 2.7 | 2 | 4 | 26.6 | 70.0 | ||
RA | 2.7 | 1 | 3 | 25.0 | 75.4 | ||
0427-E-IT | 2405 | FA | 3.4 | 2 | 5 | 25.4 | 71.3 |
MA | 3.3 | 3 | 5 | 24.6 | 73.1 | ||
RA | 2.4 | 2 | 3 | 26.8 | 70.2 | ||
0427-E-OT | 2274 | FA | 3.2 | 3 | 5 | 26.6 | 73.9 |
MA | 3.0 | 3 | 3 | 27.0 | 72.8 | ||
RA | 2.7 | 2 | 3 | 31.4 | 63.3 |
Trip | Area | Min (μg/m3) | Max (μg/m3) | Mean (μg/m3) | Median (μg/m3) | Std (μg/m3) |
---|---|---|---|---|---|---|
0425-M-IT | FA | 14 | 22 | 17.65 | 17 | 1.51 |
MA | 16 | 26 | 19.23 | 19 | 1.26 | |
RA | 13 | 25 | 17.81 | 18 | 1.7 | |
0425-M-OT | FA | 14 | 21 | 15.92 | 16 | 1.2 |
MA | 13 | 22 | 16.30 | 16 | 1.8 | |
RA | 12 | 30 | 17.18 | 17 | 2.13 | |
0425-E-IT | FA | 25 | 38 | 30.82 | 31 | 2.66 |
MA | 28 | 46 | 34.19 | 34 | 3.71 | |
RA | 21 | 45 | 26.23 | 26 | 2.53 | |
0425-E-OT | FA | 27 | 34 | 30.07 | 30 | 6.55 |
MA | 27 | 38 | 30.57 | 31 | 2.07 | |
RA | 20 | 25 | 22.64 | 22 | 2.65 | |
0427-M-IT | FA | 42 | 68 | 49.55 | 48 | 5.13 |
MA | 30 | 56 | 42.66 | 43 | 3.97 | |
RA | 33 | 52 | 42.00 | 42 | 6.87 | |
0427-M-OT | FA | 37 | 69 | 45.28 | 46 | 4.75 |
MA | 24 | 55 | 34.03 | 33 | 5.64 | |
RA | 35 | 64 | 44.22 | 46 | 4.99 | |
0427-E-IT | FA | 24 | 58 | 36.68 | 36 | 7.46 |
MA | 27 | 47 | 36.05 | 37 | 4.62 | |
RA | 22 | 42 | 32.10 | 32 | 4.3 | |
0427-E-OT | FA | 21 | 48 | 30.55 | 32 | 5.59 |
MA | 21 | 50 | 29.50 | 29 | 4.76 | |
RA | 18 | 35 | 26.79 | 28 | 4.51 |
MA vs. FA | RA vs. FA | RA vs. MA | |
---|---|---|---|
Z score | −0.560 | −1.960 ** | −1.122 |
Sig. (2-tailed) | 0.575 | 0.050 | 0.262 |
Cohen’s d | 0.168 | 0.312 | 0.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Huang, Z.; Zhang, Y. Spatiotemporal Variations in PM2.5 Concentration in Different Areas of Bus Cabin: A Case Study in Shenzhen, China. Atmosphere 2023, 14, 326. https://doi.org/10.3390/atmos14020326
Huang J, Huang Z, Zhang Y. Spatiotemporal Variations in PM2.5 Concentration in Different Areas of Bus Cabin: A Case Study in Shenzhen, China. Atmosphere. 2023; 14(2):326. https://doi.org/10.3390/atmos14020326
Chicago/Turabian StyleHuang, Jiacheng, Zhengdong Huang, and Ying Zhang. 2023. "Spatiotemporal Variations in PM2.5 Concentration in Different Areas of Bus Cabin: A Case Study in Shenzhen, China" Atmosphere 14, no. 2: 326. https://doi.org/10.3390/atmos14020326
APA StyleHuang, J., Huang, Z., & Zhang, Y. (2023). Spatiotemporal Variations in PM2.5 Concentration in Different Areas of Bus Cabin: A Case Study in Shenzhen, China. Atmosphere, 14(2), 326. https://doi.org/10.3390/atmos14020326