Spatiotemporal Trends and Variation of Precipitation over China’s Loess Plateau across 1957–2018
Abstract
:1. Introduction
2. Study Site and Data Source
2.1. Study Site
2.2. Data Source and Processing
3. Methods
3.1. Mann–Kendall Trend Test
3.2. Sen’s Slope Estimator
3.3. The Variation Coefficient of Annual Precipitation
3.4. The Wavelet Analysis
4. Results
4.1. Trend of Annual Precipitation over the Loess Plateau
4.2. Trend of Seasonal Precipitation over the Loess Plateau
4.3. Shifts of Isohyets across the Loess Plateau
4.4. Periodical Analysis of Annual Precipitation
5. Discussion
5.1. Causes of Spatiotemporal Variation in Precipitation
5.2. The Implication of Precipitation Variation on Soil Erosion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, Y.H.; Zhou, G.S.; Wang, S.D.; Zhao, J. Warm-wet climate trend enhances net primary production of the main ecosystems in China during 2000–2021. Atmosphere 2022, 13, 738. [Google Scholar] [CrossRef]
- Ren, G.Y.; Zhan, Y.J.; Ren, Y.Y.; Yu, C.; Sun, X.B. Spatial and temporal patterns of precipitation variability over mainland China: I Climatology. Advanc. Water Sci. 2015, 26, 299–310, (In Chinese with English abstract). [Google Scholar]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Wang, L.; D’Odorico, P.; Evans, J.P.; Eldridge, D.J.; Mccabe, M.F.; Caylor, K.K.; King, E.G. Dryland ecohydrology and climate change: Critical issues and technical advances. Hydrol. Earth Syst. Sci. 2012, 16, 2585–2603. [Google Scholar] [CrossRef]
- Mullan, D.; Favis-Mortlock, D.; Fealy, R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric. For. Meteorol. 2012, 156, 18–30. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.F.; Cui, B.S. Spatial and temporal variability of annual precipitation during 1961—2006 in Yellow River Basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.L.; Liu, W.Z.; Flanagan, D.C. Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961–2007. Quat. Int. 2010, 226, 92–100. [Google Scholar] [CrossRef]
- Xu, Z.X.; Li, J.Y.; Liu, C.M. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrol. Process. 2010, 21, 1935–1948. [Google Scholar] [CrossRef]
- Wang, Q.X.; Fan, X.H. Precipitation trends during 1961—2010 in the Loess Plateau region of China. Acta. Ecol. Sin. 2011, 31, 5512–5523, (In Chinese with English abstract). [Google Scholar]
- Zhang, B.Q.; Wu, P.T.; Zhao, X.N.; Gao, X.D. Spatiotemporal analysis of climate variability (1971–2010) in spring and summer on the Loess Plateau, China. Hydrol. Process. 2014, 28, 1689–1702. [Google Scholar] [CrossRef]
- Yan, L.B. Characteristics of temperature and precipitation on the Loess Plateau from 1961 to 2014. J. Earth. Environ. 2015, 6, 276–282, (In Chinese with English abstract). [Google Scholar]
- Miao, C.Y.; Sun, Q.H.; Duan, Q.Y.; Wang, Y.F. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim. Dynam. 2016, 47, 3221–3234. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.L.; Wang, J.B.; Du, H.Q.; Wen, K.M. Changes in the temperature and precipitation extremes in China during 1961–2015. Quat. Int. 2019, 527, 64–78. [Google Scholar] [CrossRef]
- Xu, X.M.; Lyu, D.; Lei, X.J.; Huang, T.; Li, Y.L.; Yi, H.J.; Guo, J.W.; He, L.; He, J.; Yang, X.H.; et al. Variability of extreme precipitation and rainfall erosivity and their attenuated effects on sediment delivery from 1957 to 2018 on the Chinese Loess Plateau. J. Soil Sediment. 2021, 21, 3933–3947. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.Q. Spatiotemporal changes of sc-PDSI and its dynamic drivers in Yellow River Basin. Atmosphere 2022, 13, 399. [Google Scholar] [CrossRef]
- Shi, Y.F.; Shen, Y.P.; Hu, R.X. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China. J. Glac. Geocry. 2002, 24, 219–226, (In Chinese with English abstract). [Google Scholar]
- Xin, Z.B.; Lu, X.X. Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956—2008. Reg. Environ. Change 2011, 11, 149–159. [Google Scholar] [CrossRef]
- Ren, J.Y.; Peng, S.Z.; Yang, C.; Huo, X.Y.; Chen, Y.M. Spatiotemporal Distribution Characteristics of Climate Change in the Loess Plateau from 1901 to 2014. J. Nat. Resour. 2018, 33, 621–633, (In Chinese with English abstract). [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Wei, F.Y. Modern Climate Statistics Diagnosis and Prediction Technology, 2nd ed.; Meteorological Publishing Press: Beijing, China, 2007; pp. 99–104. [Google Scholar]
- Mi, X.C.; Ren, H.B.; Ouyang, Z.S.; Wei, W.; Ma, K.P. The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns. Plant. Ecol. 2005, 179, 1–19. [Google Scholar] [CrossRef]
- Ippolitov, I.I.; Kabanov, M.V.; Loginov, S.V. Wavelet analysis of hidden periodicities in some indexes of solar activity. Russ. Phys. J. 2002, 45, 1086–1092. [Google Scholar] [CrossRef]
- Sangdan, K. Wavelet analysis of precipitation variability in Northern California, U.S.A. Ksce. J. Civ. Eng. 2004, 8, 471–477. [Google Scholar]
- Guo, E.L.; Zhang, J.Q.; Wang, Y.F.; Quan, L.; Zhang, R.J.; Zhang, F.; Zhou, M. Spatiotemporal variations of extreme climate events in Northeast China during 1960–2014. Ecol. Indic. 2019, 96, 669–683. [Google Scholar] [CrossRef]
- Tang, K.L.; Zhang, Z.Z.; Kong, X.L.; Shi, D.Y.; Huang, S.Y. Preliminary report on soil erosion and soil degradation in the Loess Plateau. Environ. Sci. 1984, 5, 5–10, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the loess plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspertive of climatesoil-vegetation dynamics. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, X.P.; Ma, Q.; Zhang, J.J.; Ma, T.Y.; Sun, Y.P. Spatiotemporal characteristics of precipitation and extreme events on the Loess Plateau of China between 1957 and 2009. Hydrol. Process. 2014, 28, 4971–4983. [Google Scholar] [CrossRef]
- Tang, K.L.; Xiong, G.S.; Liang, J.Y.; Jing, K. Erosion and Runoff Sediment Variation in the Yellow River Basin; China Science and Technology Press: Beijing, China, 1993; p. 4. [Google Scholar]
- Chen, L.C.; Wei, W.; Fu, B.J.; Lu, Y.H. Soil and water conservation on the Loess Plateau in China: Review and perspective. Prog. Phys. Geog. 2007, 31, 389–403. [Google Scholar] [CrossRef]
- Qin, D.H.; Ding, Y.J.; Mu, M. Climate and Environmental Evolution in China: 2012 Comprehensive Volume; Meteorological Publishing Press: Beijing, China, 2012; pp. 22, 39. [Google Scholar]
- Goossens, C.; Berger, A. Annual and seasonal climatic variations over the Northern Hemisphere and Europe during the last century. Ann. Geophys. 1986, 4, 385–400. [Google Scholar]
- Rustomji, P.; Zhang, X.P.; Hairsinen, P.B.; Zhang, L.; Zhao, J. River sediment load and concentration responses to changes in hydrology and catchment management in the Loess Plateau region of China. Water Resour. Res. 2008, 45, 377–393. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Ma, S.H.; Zhang, X.W. Some results of variation coefficient of annual rainfall in XingJiang, China. J. Meteorol. Res. 1993, 7, 123–128. [Google Scholar]
- Subasi, A.; Kiymik, M.K.; Akin, M.; Erogul, O. Automatic recognition of vigilance state by using a wavelet-based artificial neural network. Neural. Comput. Appl. 2005, 14, 45–55. [Google Scholar] [CrossRef]
- Fu, G.B.; Chen, S.L.; Liu, C.M.; Shepard, D. Hydro-climatic trends of the Yellow River Basin for the last 50 years. Clim. Chang. 2004, 65, 149–178. [Google Scholar] [CrossRef]
- Ding, Y.H.; Liu, Y.J.; Ying, S.; Song, Y.F. Weakening of the Asian summer monsoon and its impact on the precipitation pattern in China. Int. J. Water Resour. D 2010, 26, 423–439. [Google Scholar] [CrossRef]
- Ren, G.Y.; Liu, Y.J.; Sun, X.B.; Zhang, L.; Ren, Y.Y.; Ying, X.U.; Zhang, H.; Zhan, Y.J.; Wang, T.; Guo, Y.J. Spatial and temporal patterns of precipitation variability over mainland China: III: Causes for recent trends. Advanc. Water Sci. 2016, 26, 451–465, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.; Cai, W.J.; Sun, C.F.; Song, H.M.; Cobb, K.M.; Li, J.P.; Leavitt, S.W.; Wu, L.X.; Cai, Q.F.; Liu, R.S.; et al. Anthropogenic aerosols cause recent pronounced weakening of Asian summer monsoon relative to last four centuries. Geophys. Res. Lett. 2019, 46, 5469–5479. [Google Scholar] [CrossRef]
- Kong, D.X.; Miao, C.Y.; Borthwick, A.G.L.; Duan, Q.Y.; Hao, L.; Sun, Q.H.; Ye, A.Z.; Di, Z.H.; Wei, G. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J. Hydrol. 2015, 520, 157–167. [Google Scholar] [CrossRef]
- Xu, M.; Chang, C.P.; Fu, C.; Qi, Y.; Robock, A.; Robinson, D.; Zhang, H.M. Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res.-Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Xu, M.; Hu, Q. Changes in near-surface wind speed in China: 1969–2005. Int. J. Climato. 2015, 31, 349–358. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Y.; Zhao, Z.C.; Tao, S.W. Changes in wind speed over China during 1956–2004. Theor. Appl. Climatol. 2010, 99, 421–430. [Google Scholar] [CrossRef]
- Lin, C.; Yang, K.; Qin, J. Observed surface and upper-air wind speed changes over China since 1960. J. Clim. 2012, 26, 2891–2903. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers of Climate Change: The Physical Science Basis. Contribution of Working Group into the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ding, Z.Y.; Lu, R.J.; Liu, C.; Duan, C.X. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake Basin. Advanc. Earth Sci. 2018, 33, 281–293, (In Chinese with English abstract). [Google Scholar]
- Bjorn, S.; Graham, F. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar]
- Gao, X.J.; Zhang, D.F.; Chen, Z.X.; Pal, J.S.; Giorgi, F. Land use effects on climate in China as simulated by a regional climate model. Sci. Chin. (Earth Sci). 2007, 50, 620–628, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Pielke, R.A.S.; Adegoke, J.; BeltraáN-Przekurat, A.; Hiemstra, C.A.; Lin, J.; Nair, U.S.; Niyogi, D.; Nobis, T.E. An overview of regional land-use and land-cover impacts on rainfall. Tell. Seri. B-Chem. Phys. Mete. 2010, 59, 587–601. [Google Scholar] [CrossRef]
- Cao, X.M.; Liu, Z.H.; Yang, Z.M.; Xu, L. Rainfall characteristics research of spatial and temporal variation in the middle of the Loess Plateau. J. Sichuan Norm. Univ. Nat. Sci. 2011, 34, 724–728, (In Chinese with English abstract). [Google Scholar]
- Rasmusson, E.M.; Wang, X.L.; Ropelewski, C.F. The biennial component of ENSO variability. J. Marine Syst. 1990, 1, 71–96. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Y.R. Spatial-temporal evolution of precipitation in China Loess Plateau. J. Des. Res. 2007, 27, 502–508, (In Chinese with English abstract). [Google Scholar]
- Wang, T. Precipitation Reconstruction and Muti-Scales Variations of North China over the Past 400 Years; Nanjing University of Information Science and Technology: Nanjing, China, 2015. [Google Scholar]
- Soksamnang, K.E.O.; He, H.M.; Zhao, H.F.; Jing, S.W. Analysis of rainfall erosivity change and its impacts on soil erosion on the Loess Plateau over more than 50 years. Res. Soil Water Cons. 2018, 25, 1–7, (In Chinese with English abstract). [Google Scholar]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Liu, E.J.; Zhang, X.P.; Xie, M.L.; Chen, N.; Zhang, T.T.; Guo, M.J. Hydrologic responses to vegetation restoration and their driving forces in a catchment in the Loess hilly-gully area:a case study in the upper Beiluo River. Acta Ecol. Sin. 2015, 35, 622–629, (In Chinese with English abstract). [Google Scholar]
- Yang, X.H.; Zhang, X.P.; Lv, D.; Yin, S.Q.; Zhang, M.X.; Zhu, Q.G.Z.; Yu, Q. Remote sensing estimation of the soil erosion cover-management factor for China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 1942–1955. [Google Scholar] [CrossRef]
- Liu, B.Y.; Tang, K.L.; Jiao, J.Y.; Ma, X.Y.; Zhang, X.P.; Cao, Q.; Xiao, P.Q.; Wei, X.; Fu, S.H.; Miu, C.Y.; et al. Temporal and Spatial Altas of Water and Sediment in the Yellow River; Science Press: Beijing, China, 2019. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. Announcement on Soil and Water Conservation in China. Available online: http://www.swcc.org.cn/gglm/2019/0820/38773.html (accessed on 20 August 2019).
- Castillo, V.M.; Martinez-Mena, M.; Albaladejo, J. Runoff and soil loss response to vegetation removal in a semiarid environment. Soil Sci. Soc. Am. J. 1997, 61, 1116–1121. [Google Scholar] [CrossRef]
- Gao, Z.L.; Fu, Y.L.; Li, Y.H.; Liu, J.X.; Chen, N.; Zhang, X.P. Trends of streamflow, sediment load and their dynamic relations for the catchments in the middle reaches of the Yellow River in the past five decades. Hydrol. Earth Syst. Sci. 2012, 9, 5487–5514. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.B.; Zhang, L.; Gallichand, J. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process. 2003, 17, 2599–2609. [Google Scholar] [CrossRef]
- Xu. Precipitation-vegetation coupling and its influence on erosion on the Loess Plateau, China. Catena 2006, 64, 103–116. [Google Scholar]
- Zhang, X.P.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Zhao, G.J.; Mu, X.M.; Wen, Z.M.; Wang, F.; Gao, P. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Piao, S.l.; Lv, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosi. 2015, 9, 38–41. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhang, X.P.; Li, R.; Chen, L.L.; Lin, P.F. Did streamflow or suspended sediment concentration changes reduce sediment load in the middle reaches of the Yellow River? J. Hydrol. 2017, 546, 357–369. [Google Scholar] [CrossRef]
- Zhang, X.P.; Lin, P.F.; Chen, H.; Yan, R.; Zhang, J.J.; Yu, Y.P.; Liu, E.J.; Yang, Y.H.; Zhao, W.H.; Lv, D. Understanding land use/cover change impacts on runoff and sediment load at flood events on the Loess Plateau, China. Hydrol. Process. 2018, 32, 576–589. [Google Scholar] [CrossRef]
- Shi, P.R.; Hou, P.; Gao, J.X.; Wan, H.W.; Wang, Y.C.; Sun, C.X. Spatial-temporal variation characteristics and influencing factors of vegetation in the Yellow River Basin from 2000 to 2019. Atmosphere 2021, 12, 1576. [Google Scholar] [CrossRef]
- Sun, W.Y.; Mu, X.M.; Song, X.Y.; Dan, W.; Cheng, A.F.; Bing, Q. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Liu, B.Y.; Liu, X.Y.; Yang, Q.K.; Zhang, X.P.; Cao, W.; Dang, W.Q. Investigation report on storm resistance ability of comprehensive control of soil and water loss in small watershed of loess plateau. Bull. Soil Water Cons. 2017, 34, 349–350, (In Chinese with English abstract). [Google Scholar]
- Ma, X.H.; Zhang, Z.Z.; Zhang, Y.Q.; Liu, C.M.; Xu, D.Y.; Lei, R.D.; Wang, Y.H. Forest Hydrology; China Forestry Publishing Press: Beijing, China, 1993; pp. 63–65. [Google Scholar]
- Podlasly, C.; Ren, Y.; Zhang, L.L.; Feger, K.H.; Wang, Y.H.; Kai, S. Separating the effects of changes in land management and climatic conditions on long-term streamflow trends analyzed for a small catchment in the Loess Plateau region, NW China. Hydrol. Process. 2014, 28, 1284–1293. [Google Scholar]
- He, L.; Lv, D.; Guo, J.W.; Lei, S.Y.; He, J.; Zhang, X.P. Spatial and temporal variation characteristics of photosynthetic vegetation cover in Beiluo River Basin from 2001 to 2017 based on MODIS products. Yellow River 2020, 42, 67–71, 76, (In Chinese with English abstract). [Google Scholar]
Number | Name of Periods | Range of Periods |
---|---|---|
1 | Spring | March to May |
2 | Summer | June to August |
3 | Autumn | September to November |
4 | Winter | December to the following February |
5 | Wet season | May to October |
6 | Dry season | November to the following April |
7 | Early flood period (EFP) | May to July |
8 | Late flood period (LFP) | August to October |
Stage | Period | Mean (mm) | Maximum (mm) | Minimum (mm) | |
---|---|---|---|---|---|
I | 1957–1969 | 470 | 647 | 304 | 0.20 |
II | 1970–1979 | 441 | 513 | 330 | 0.12 |
1980–1989 | 430 | 504 | 334 | 0.13 | |
1990–1999 | 411 | 483 | 315 | 0.12 | |
III | 2000–2009 | 419 | 559 | 375 | 0.12 |
2010–2018 | 465 | 512 | 403 | 0.07 |
Spring | Summer | Autumn | Winter | Wet Season | Dry Season | EFP | LEP | |
---|---|---|---|---|---|---|---|---|
Sen’s slope | −0.04 | −0.28 | −0.03 | 0.05 | −0.11 | −0.16 | −0.14 | −0.29 |
Significance | no | no | no | no | no | no | no | no |
Period | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | |||||
1957–1969 | 85.5 | 0.38 | 247.1 | 0.23 | 119.5 | 0.32 | 10.1 | 0.44 |
1970–1979 | 70.1 | 0.17 | 271.2 | 0.34 | 106.4 | 0.28 | 13.6 | 0.31 |
1980–1989 | 78.1 | 0.27 | 234.9 | 0.16 | 95.5 | 0.3 | 10.6 | 0.61 |
1990–1999 | 81.1 | 0.42 | 231.6 | 0.19 | 81.4 | 0.2 | 9.8 | 0.6 |
2000–2009 | 66.8 | 0.31 | 219.2 | 0.13 | 108.1 | 0.22 | 14.0 | 0.26 |
2010–2018 | 81.2 | 0.15 | 266.6 | 0.36 | 119.4 | 0.25 | 13.4 | 0.39 |
Period | Wet season | Dry season | EFP | LFP | ||||
Mean (mm) | Mean (mm) | Mean (mm) | Mean (mm) | |||||
1957–1969 | 393.8 | 0.22 | 68.8 | 0.22 | 187.9 | 0.21 | 205.9 | 0.3 |
1970–1979 | 369.6 | 0.15 | 60.6 | 0.24 | 177.7 | 0.16 | 191.9 | 0.24 |
1980–1989 | 367.7 | 0.16 | 57.2 | 0.4 | 189.3 | 0.18 | 178.5 | 0.21 |
1990–1999 | 341.0 | 0.15 | 56.1 | 0.33 | 184.6 | 0.16 | 156.5 | 0.26 |
2000–2009 | 357.3 | 0.12 | 52.9 | 0.24 | 170.8 | 0.16 | 186.5 | 0.18 |
2010–2018 | 388.3 | 0.11 | 64.2 | 0.29 | 199.3 | 0.24 | 189.0 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Huang, T. Spatiotemporal Trends and Variation of Precipitation over China’s Loess Plateau across 1957–2018. Atmosphere 2023, 14, 323. https://doi.org/10.3390/atmos14020323
Xu X, Huang T. Spatiotemporal Trends and Variation of Precipitation over China’s Loess Plateau across 1957–2018. Atmosphere. 2023; 14(2):323. https://doi.org/10.3390/atmos14020323
Chicago/Turabian StyleXu, Xiaoming, and Tao Huang. 2023. "Spatiotemporal Trends and Variation of Precipitation over China’s Loess Plateau across 1957–2018" Atmosphere 14, no. 2: 323. https://doi.org/10.3390/atmos14020323
APA StyleXu, X., & Huang, T. (2023). Spatiotemporal Trends and Variation of Precipitation over China’s Loess Plateau across 1957–2018. Atmosphere, 14(2), 323. https://doi.org/10.3390/atmos14020323