Thunderstorm Ground Enhancements Measured on Aragats and Progress of High-Energy Physics in the Atmosphere
Abstract
:1. Introduction
2. Model of a Thunderstorm Ground Enhancement (TGE)
- The dipole formed by the main negative layer in the middle of the thundercloud (MN) and its mirror image (hereafter, MN-MIRR) accelerates electrons downward. The electric field can extend close to the Earth’s surface, with gamma rays and electrons registered by particle detectors. The NSEF falls in the negative domain, reaching ≈−30 kV/m for the largest TGEs.
- 2.
- In addition to the MN-MIRR, another dipole is formed by MN-LPCR. For a few minutes, when LPCR is large enough, it screens the detector site from the negative charge of MN, and a positive NSEF is observed.
3. Electron Energy Spectra
4. Vertical and Horizontal Profiles of the Atmospheric Electric Field during Thunderstorms
5. Comments on the “Lightning” Origin of Enhanced Particle Fluxes from Thunderclouds
6. Are EAS Cores, or Specific Lightning Discharges Generating Downward Terrestrial Gamma Flashes (DTGFs)?
7. Overestimation of the Gamma Ray Energy by High-Altitude EAS Arrays during Thunderstorms
8. Forbush Decrease Measured by SEVAN Network
9. Estimation of the Maximum Strength of the Atmospheric Electric Field on Lomnicky Stit
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
GCR | Galactic cosmic rays |
HEPA | High-energy physics in the atmosphere |
RREA | Relativistic runaway electron avalanche |
TGE | Thunderstorm ground enhancement |
NSEF | Near-surface electrical field |
NGR | Natural gamma radiation |
MN-MIRR | Dipole made by the main negative layer and its mirror in the Earth |
MN-LPCR | Dipole made by the main negative and lower positively charged layers |
TGF | Terrestrial gamma flash |
DTGF | Downward TGF |
EXPACS | EXcel-based Program for calculating Atmospheric Cosmic-ray Spectrum |
CORSIKA | COsmic Ray SImulations for KAscade |
BOLTEK | Company producing EFM-100 electric field sensor |
ASNT | Aragats Solar Neutron Telescope |
STAND1 | Particle detector network on Aragats |
HAWK | High-altitude water Cherenkov facility |
TA | Telescope Array |
TASD | Telescope array’s scintillator detector |
WWLLN | Worldwide lightning location networks |
NLDN | Vaisala single lightning detector network |
LMA | Lightning mapping array |
FSDAQ | Fast synchronized data acquisition system |
CME | Coronal mass ejection |
ICME | Interplanetary CME |
GMS | Geomagnetic storm |
FD | Forbush decrease |
FWMH | Full width on half maximum |
MAKET | Experimental hall on Aragats |
SKL | Experimental hall on Aragats |
References
- Chilingarian, A.; Daryan, A.; Arakelyan, K.; Hovhannisyan, A.; Mailyan, B.; Melkumyan, L.; Hovsepyan, G.; Chilingaryan, S.; Reymers, A.; Vanyan, L. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons. Phys. Rev. D 2010, 82, 043009. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Hovhannisyan, A. Particle bursts from thunderclouds: Particle accelerators above our heads. Phys. Rev. D 2011, 83, 062001. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G. The synergy of the cosmic ray and high energy atmospheric physics: Particle bursts observed by arrays of particle detectors. New Astron. 2022, 97, 101871. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Karapetyan, T.; Sargsyan, B.; Chilingaryan, S. Measurements of energy spectra of relativistic electrons and gamma-rays from avalanches developed in the thunderous atmosphere with Aragats Solar Neutron Telescope. J. Instrum. 2022, 17, P03002. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Karapetyan, T.; Khanykyanc, Y.; Pokhsraryan, D.; Sargsyan, B.; Chilingaryan, S.; Soghomonyan, S. Multi-messenger observations of thunderstorm-related bursts of cosmic rays. J. Instrum. 2022, 17, P07022. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Karapetyan, T.; Kozliner, L.; Chilingaryan, S.; Pokhsraryan, D.; Sargsyan, B. The horizontal profile of the atmospheric electric fields as measured during thunderstorms by the network of NaI spectrometers located on the slopes of Mt. Aragats. J. Instrum. 2022, 17, P10011. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Zazyan, M. Measurement of TGE particle energy spectra: An insight in the cloud charge structure. Europhys. Lett. 2021, 134, 69001. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Karapetyan, T.; Sargsyan, B.; Zazyan, M. Development of the relativistic runaway avalanches in the lower atmosphere above mountain altitudes. Europhys. Lett. 2022, 139, 50001. [Google Scholar] [CrossRef]
- Aglietta, M.; EAS-TOP Collaboration. The EAS-TOP array at E0 = 0.25 × 1014 − 1016 eV: Stability and resolutions. Nucl. Instrum. Methods Phys. Res. Sect. A 1989, 277, 23–28. [Google Scholar] [CrossRef]
- Axikegu; Bartoli, B.; Bernardini, P.; Bi, X.J.; Cao, Z.; Catalanotti, S.; Chen, S.Z.; Chen, T.L.; Cui, S.W.; Dai, B.Z.; et al. Cosmic ray shower rate variations detected by the ARGO-YBJ experiment during thunderstorms. Phys. Rev. D 2022, 106, 022008. [Google Scholar] [CrossRef]
- Aharonian, F.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, J.T.; et al. Flux Variations of Cosmic Ray Air Showers Detected by LHAASO-KM2A During a Thunderstorm on 10 June 2021. Chin. Phys. C 2022, 47, 015001. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Zazyan, M. Sinergy of extra-terrestrial particle accelerators and accelerators operating in the terrestrial atmosphere. J. Phys. Conf. Ser. 2022, 2398, 012001. [Google Scholar] [CrossRef]
- Chilingarian, A.; Karapetyan, T.; Zazyan, M.; Hovsepyan, G.; Sargsyan, B.; Nikolova, N.; Angelov, H.; Chum, J.; Langer, R. Maximum strength of the atmospheric electric field. Phys. Rev. D 2021, 103, 043021. [Google Scholar] [CrossRef]
- Gurevich, A.V.; Milikh, G.; Roussel-Dupre, R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 1992, 165, 463–468. [Google Scholar] [CrossRef]
- Dwyer, J.R. A fundamental limit on electric fields in air. Geophys. Res. Lett. 2003, 30, 2055. [Google Scholar] [CrossRef]
- Babich, L.P.; Donskoy, E.N.; Kutsyk, I.M.; Kudryavtsev, A.Y.; Roussel-Dupre, R.A.; Shamraev, B.N.; Symbalisty, E.M. Comparison of relativistic runaway electron avalanche rates obtained from Monte Carlo simulations and kinetic equation solution. IEEE Trans. Plasma Sci. 2001, 29, 430–438. [Google Scholar] [CrossRef]
- Wada, Y.; Morimoto, T.; Nakamura, Y.; Wu, T.; Enoto, T.; Nakazawa, K.; Ushio, T.; Yuasa, T.; Tsuchiya, H. Characteristics of Low-Frequency Pulses Associated with Downward Terrestrial Gamma-Ray Flashes. Geophys. Res. Lett. 2022, 49, e2021GL097348. [Google Scholar] [CrossRef]
- Rakov, V.; Kerezzy, I. Ground-based observations of lightning-related X-ray/gamma-ray emissions in Florida: Occurrence context and new insights. Electr. Power Syst. Res. 2022, 213, 108736. [Google Scholar] [CrossRef]
- Dwyer, J.R. The relativistic feedback discharge model of terrestrial gamma ray flashes. J. Geophys. Res. Atmos. 2012, 117, A02308. [Google Scholar] [CrossRef]
- Celestin, S.; Pasko, V.P. Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J. Geophys. Res. Atmos. 2011, 116, A03315. [Google Scholar] [CrossRef]
- Rison, W.; Thomas, R.J.; Krehbiel, P.R.; Hamlin, T.; Harlin, J. A GPS-based Three-Dimensional Lightning Mapping System: Initial Observations in Central New Mexico. Geophys. Res. Lett. 1999, 26, 3573–3576. [Google Scholar] [CrossRef]
- Rodger, C.J.; Brundell, J.; Dowden, R.L. Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade. Ann. Geophys. 2005, 23, 277–290. [Google Scholar] [CrossRef]
- Stock, M.G.; Akita, M.; Krehbiel, P.R.; Rison, W.; Edens, H.E.; Kawasaki, Z.; Stanley, M.A. Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. J. Geophys. Res. Atmos. 2014, 119, 3134–3165. [Google Scholar] [CrossRef]
- EFM-100 Atmospheric Electric Field Monitor. 2011. Available online: https://www.boltek.com/EFM-100C_Manual_121415.pdf (accessed on 29 January 2023).
- Kuettner, J. The electrical and meteorological conditions inside thunderclouds. J. Meteorol. 1950, 7, 322–332. [Google Scholar] [CrossRef]
- Svechnikova, E.K.; Ilin, N.V.; Mareev, E.A.; Chilingarian, A.A. Characteristic Features of the Clouds Producing Thunderstorm Ground Enhancements. J. Geophys. Res. Atmos. 2021, 126, e2019JD030895. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Nakazawa, K.; Kitaguchi, T.; Kawaharada, M.; Kokubun, M.; Kato, H.; Okano, M.; et al. Long-duration gamma ray emissions from 2007 to 2008 winter thunderstorms. J. Geophys. Res. 2011, 116, D09113. [Google Scholar]
- Wada, Y.; Enoto, T.; Kubo, M.; Nakazawa, K.; Shinoda, T.; Yonetoku, D.; Sawano, T.; Yuasa, T.; Ushio, T.; Sato, Y.; et al. Meteorological Aspects of Gamma-Ray Glows in Winter Thunderstorms. Geophys. Res. Lett. 2021, 48, e2020GL091910. [Google Scholar] [CrossRef]
- Fishman, G.J.; Bhat, P.N.; Mallozzi, R.; Horack, J.M.; Koshut, T.; Kouveliotou, C.; Pendleton, G.N.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.S.; et al. Discovery of intense gamma ray flashes of atmospheric origin. Science 1994, 264, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Chilingarian, A.; Hovsepyan, G.; Elbekian, A.; Karapetyan, T.; Kozliner, L.; Martoian, H.; Sargsyan, B. Origin of enhanced gamma radiation in thunderclouds. Phys. Rev. Res. 2019, 1, 033167. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Sargsyan, B. Circulation of Radon Progeny in the Terrestrial Atmosphere During Thunderstorms. Geophys. Res. Lett. 2020, 47, e2020GL091155. [Google Scholar] [CrossRef]
- Chilingarian, A.; Mkrtchyan, H.; Karapetyan, G.; Sargsyan, B.; Arestakesyan, A. Catalog of 2017 thunder-storm ground enhancement (TGE) events observed on Aragats. Sci. Rep. 2019, 9, 6253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilingarian, A.; Hovsepyan, G.; Aslanyan, D.; Karapetyan, T.; Khanikyanc, Y.; Kozliner, L.; Sargsyan, B.; Soghomonyan, S.; Chilingaryan, S.; Pokhsraryan, D.; et al. Thunderstorm Ground Enhancements: Multivariate analysis of 12 years of observations. Phys. Rev. D 2022, 106, 082004. [Google Scholar] [CrossRef]
- Williams, E.; Mkrtchyan, H.; Mailyan, B.; Karapetyan, G.; Hovakimyan, S. Radar Diagnosis of the Thundercloud Electron Accelerator. J. Geophys. Res. Atmos. 2022, 127, e2021JD035957. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4, A simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Heck, D.; Knapp, J.; Capdevielle, J.N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers; Report FZKA; Forschungszentrum Karlsruhe: Karlsruhe, Germany, 1998; Volume 6019. [Google Scholar]
- Chilingarian, A.; Hovsepyan, G.; Svechnikova, E.; Zazyan, M. Electrical structure of the thundercloud and operation of the electron accelerator inside it. Astropart. Phys. 2021, 132, 102615. [Google Scholar] [CrossRef]
- Sato, T. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes. PLoS ONE 2016, 11, e0160390. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Karapetyan, T.; Sargsyan, B.; Zazyan, M. On the vertical and horizontal profiles of the atmospheric electric field during thunderstorms. J. Phys. Conf. Ser. 2022, 2398, 012002. [Google Scholar] [CrossRef]
- Chilingarian, A.; Soghomonyan, S.; Khanikyanc, Y.; Pokhsraryan, D. On the origin of particle fluxes from thunderclouds. Astropart. Phys. 2018, 105, 54–62. [Google Scholar] [CrossRef]
- Pokhsraryan, D. Fast Data Acquisition System Based on NI-myRIO Board with GPS Time Stamping Capabilities. In Proceedings of the TEPA 2016 Symposium, Nor-Amberd, Armenia, 3–7 October 2016; p. 23. [Google Scholar]
- Chilingarian, A. Do Relativistic Elementary Particles Originate in the Lightning Discharges? Bull. Russ. Acad. Sci. Phys. 2017, 81, 238–240. [Google Scholar] [CrossRef]
- Chilingarian, A. Comments on the Models based on the Concept of Runaway Electrons for Explaining High-Energy Phenomena in the Terrestrial Atmosphere. Bull. Russ. Acad. Sci. Phys. 2017, 81, 234–237. [Google Scholar] [CrossRef]
- Abeysekara, A.; Aguilar, J.; Aguilar, S.; Alfaro, R.; Almaraz, E.; Álvarez, C.; Álvarez-Romero, J.D.D.; Arceo, R.; Arteaga-Velázquez, J.; Badillo, C.; et al. On the sensitivity of the HAWC observatory to gamma-ray bursts. Astropart. Phys. 2012, 35, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Bowers, G.S.; Shao, X.-M.; Blaine, W.; Dingus, B.; Smith, D.M.; Chaffin, J.; Ortberg, J.; Rassoul, H.K.; Ho, C.; Nellen, L.; et al. Fairweather neutron bursts from photonuclear reactions by extensive air shower core interactions in the ground and implications for Terrestrial gamma-ray flash signatures. Geophys. Res. Lett. 2021, 48, e2020GL090033. [Google Scholar] [CrossRef]
- Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.; Bergman, D.; Blake, S.; Cady, R.; et al. The surface detector array of the Telescope Array experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2012, 689, 87–97. [Google Scholar] [CrossRef]
- Abbasi, R.; Belz, J.; Le Von, R.; Rodeheffer, D.; Krehbiel, P.; Remington, J.; Rison, W. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders. EPJ Web Conf. 2019, 197, 03002. [Google Scholar] [CrossRef]
- Belz, J.W.; Krehbiel, P.R.; Remington, J.; Stanley, M.A.; Abbasi, R.U.; LeVon, R.; Rison, W.; Rodeheffer, D.; Abu-Zayyad, T.; Allen, M.; et al. Observations of the Origin of Downward Terrestrial Gamma-Ray Flashes. J. Geophys. Res. Atmos. 2020, 125, e2019JD031940. [Google Scholar] [CrossRef]
- Stenkin, Y.V.; Djappuev, D.D.; Valdés-Galicia, J.F. Neutrons in extensive air showers. Phys. At. Nucl. 2007, 70, 1088–1099. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Kozliner, L. Extensive air showers, lightning, and thunderstorm ground enhancements. Astropart. Phys. 2016, 82, 21–35. [Google Scholar] [CrossRef]
- Soghomonyan, S.; Chilingarian, A.; Pokhsraryan, D. Extensive Air Shower (EAS) Registration by the Measurements of the Multiplicity of Neutron Monitor Signal. Mendeley Data V1. 2021. Available online: https://data.mendeley.com/datasets/43ndcktj3z/1 (accessed on 29 January 2023).
- Cao, Z.; Aharonian, F.A.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Mailyan, B. In situ measurements of the Runaway Breakdown (RB) on Aragats mountain. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2017, 874, 19–27. [Google Scholar] [CrossRef]
- Forbush, S.E. World-wide cosmic-ray variations, 1937–1952. J. Geophys. Res. 1954, 59, 525–542. [Google Scholar] [CrossRef]
- Chilingarian, A.; Babayan, V.; Karapetyan, T.; Mailyan, B.; Sargsyan, B.; Zazyan, M. The SEVAN Worldwide network of particle detectors: 10 years of operation. Adv. Space Res. 2018, 61, 2680–2696. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Martoyan, H.; Karapetyan, T.; Sargsyan, B.; Nokolova, N.; Angelov, H.; Haas, D.; Knapp, J.; Walter, M.; et al. Forbush decreased observed by nodes of SEVAN East-European particle detector network on November 2021. In Proceedings of the Conference on Cosmic Ray Physics with Neutron Detectors, Athens, Greece, 16 July 2022. [Google Scholar]
- Chilingarian, A. Thunderstorm ground enhancements—Model and relation to lightning flashes. J. Atmos. Sol.-Terr. Phys. 2014, 107, 68–76. [Google Scholar] [CrossRef]
- Chilingarian, A.; Chilingaryan, S.; Karapetyan, T.; Kozliner, L.; Khanikyants, Y.; Hovsepyan, G.; Pokhsraryan, D.; Soghomonyan, S. On the initiation of lightning in thunderclouds. Sci. Rep. 2017, 7, 1371. [Google Scholar] [CrossRef]
- Chilingarian, A.; Khanikyants, Y.; Rakov, V.A.; Soghomonyan, S. Termination of thunderstorm-related bursts of energetic radiation and particles by inverted-polarity intracloud and hybrid lightning discharge. Atmos. Res. 2020, 233, 104713. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Karapetyan, G.; Zazyan, M. Stopping muon effect and estimation of intracloud electric field. Astropart. Phys. 2020, 124, 102505. [Google Scholar] [CrossRef]
- Chum, J.; Langer, R.; Baše, J.; Kollárik, M.; Strhárský, I.; Diendorfer, G.; Rusz, J. Significant enhancements of secondary cosmic rays and electric field at high mountain peak during thunderstorms. Earth Planets Space 2020, 72, 28. [Google Scholar] [CrossRef]
- Diendorfer, G. LLS performance validation using lightning to towers. In Proceedings of the 21st International Lightning Detection Conference (ILDC), Orlando, FL, USA, 19–20 April 2010; Volume 230, p. 1. [Google Scholar]
- Chilingarian, A.; Bostanjyan, N.; Karapetyan, T.; Vanyan, L. Remarks on recent results on neutron production during thunderstorms. Phys. Rev. D 2012, 86, 093017. [Google Scholar] [CrossRef]
- Stolzenburg, M.; Marshall, T.C.; Rust, W.D.; Bruning, E.; MacGorman, D.R.; Hamlin, T. Electric field values observed near light- ning flash initiations. Geophys. Res. Lett. 2007, 34, L04804. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Aslanyan, D.; Sargsyan, B.; Karapetyan, T. Catalog of Thunderstorm Ground Enhancements (TGEs) observed at Aragats in 2013–2021. Mendeley Data, V1. 2022. Available online: https://data.mendeley.com/datasets/8gtdbch59z, (accessed on 29 January 2023).
- Gardner, S.C. Using a Field Mill Climatology to Assess All Lightning Launch Commit Criteria, AFIT-ENV-MS-20-M-204. 2020. Available online: https://scholar.afit.edu/etd/3206/ (accessed on 29 January 2023).
- Büsken, M.; Pierre Auger Collaboration. A new network of electric field mills at the Pierre Auger Observatory. J. Phys. Conf. Ser. 2022, 2398, 012004. [Google Scholar] [CrossRef]
- Schmuckermaier, F.; Gaug, M.; Fruck, C.; Hahn, A.; Acciari, V.; Besenrieder, J.; Prester, D.D.; Dorner, D.; Fink, D.; Font, L.; et al. Correcting MAGIC Telescope data taken under non-optimal atmospheric conditions with an elastic LIDAR. J. Phys. Conf. Ser. 2022, 2398, 01201. [Google Scholar] [CrossRef]
- Gaisser, T.; Tilav, S.; Soldin, D.; Desiati, P.; on behalf of the IceCube Collaboration. Seasonal Variation of Atmospheric Muons in IceCube. arXiv 2019, arXiv:1909.01406v1. [Google Scholar]
Atm. El. Field | Date of TGE | Height of El. Field Termination | N of El. E > 4 MeV per Seed Electron | N of γ Rays E > 4 MeV per Seed Electron |
---|---|---|---|---|
1.8 kV/cm | - | 100 | 0.03 | 0.78 |
1.9 kV/cm | - | 100 | 0.12 | 3.9 |
1.9 kV/cm | - | 200 | 0.08 | 3.1 |
2.0 kV/m | - | 200 | 0.43 | 22 |
- | 14 June 2020 | - | 0.14 | 1.26 |
- | 27 June 2020 | - | 0.041 | 0.51 |
- | 23 July 2020 | - | 0.059 | 0.49 |
Eo (TeV) | Ne | |||
---|---|---|---|---|
Ez = 0 kV/cm | Ez = 1.9 kV/cm | Ez = 2.0 kV/cm | Ez = 2.1 kV/cm | |
1 | 316 | 12,103 | 15,904 | 18,044 |
10 | 5560 | 148,088 | 201,096 | 229,163 |
100 | 69,996 | 1,374,853 | 1,775,837 | 2,169,369 |
1000 | 827,547 | 10,346,388 | 13,605,357 | 14,066,929 |
Eo (GeV) | Eest (GeV) |
---|---|
103 | 2.23 × 104 |
104 | 1.34 × 105 |
105 | 6.50 × 105 |
106 | 2.42 × 106 |
Name | Mean 1/min | σ | 13:14 1/min | % | N Times |
---|---|---|---|---|---|
SEVAN upper | 25,047 | 171 | 2,534,000 | 10,013 | 101 |
Coincidence “111” muons | 1929 | 48 | 1666 | −14 | |
Coincidence “100 “low energy part. | 19,550 | 142 | 2,526,000 | 12,890 | 130 |
Coincidence “010” gamma rays | 1468 | 39 | 3326 | 125 | 2.7 |
Neutron monitor | 29,640 | 265 | 71,220 | 140 | 2.4 |
SEVAN Upper Scintillator | Electron Counts /m2 s | Gamma Ray Counts /m2 s | Sum El. + Gamma /m2 s | Total Expected Counts /m2 s |
---|---|---|---|---|
2.4 kV/cm 50 m | 175 | 13 | 188 | 85,540 |
2.4 kV/cm 100 m | 11 | 10 | 21 | 9555 |
2.5 kV/cm 50 m | 1268 | 76 | 1344 | 611,520 |
2.5 kV/cm 100 m | 119 | 68 | 187 | 85,085 |
TGE on 10 June 2017 | 42,223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilingarian, A. Thunderstorm Ground Enhancements Measured on Aragats and Progress of High-Energy Physics in the Atmosphere. Atmosphere 2023, 14, 300. https://doi.org/10.3390/atmos14020300
Chilingarian A. Thunderstorm Ground Enhancements Measured on Aragats and Progress of High-Energy Physics in the Atmosphere. Atmosphere. 2023; 14(2):300. https://doi.org/10.3390/atmos14020300
Chicago/Turabian StyleChilingarian, Ashot. 2023. "Thunderstorm Ground Enhancements Measured on Aragats and Progress of High-Energy Physics in the Atmosphere" Atmosphere 14, no. 2: 300. https://doi.org/10.3390/atmos14020300
APA StyleChilingarian, A. (2023). Thunderstorm Ground Enhancements Measured on Aragats and Progress of High-Energy Physics in the Atmosphere. Atmosphere, 14(2), 300. https://doi.org/10.3390/atmos14020300