Species-Specific Contribution to Atmospheric Carbon and Pollutant Removal: Case Studies in Two Italian Municipalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local Climate and Study Area
2.1.1. Milan
2.1.2. Bologna
2.2. Meteorological and Air Pollutant Concentration Modelling
2.3. Tree Cover Maps
2.4. The AIRTREE Model
3. Results and Discussion
3.1. Species-Specific Performances in Carbon and Pollutant Removal
3.2. Differences in Pollutant Sequestration Depending on Macrotype
3.3. Sequestration of Carbon Dioxide and Particulate Matter at the Municipality Scale
4. Conclusions
5. Sitography (Accessed on 26 January 2022)
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lovasi, G.S.; Quinn, J.W.; Neckerman, K.M.; Perzanowski, M.S.; Rundle, A. Children living in areas with more street trees have lower prevalence of asthma. J. Epidemiol. Community Health 2008, 62, 647–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- EEA. Air Quality in Europe. European Environment Agency. 2019. Available online: https://www.eea.europa.eu/publications/air-quality-ineurope-2019 (accessed on 26 January 2022).
- Psistaki, K.; Achilleos, S.; Middleton, N.; Paschalidou, A.K. Exploring the Impact of Particulate Matter on Mortality in Coastal Mediterranean Environments. Sci. Total Environ. 2023, 865, 161147. [Google Scholar] [CrossRef] [PubMed]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; Van Der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gomez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; De Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Le Thiec, D.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Samson, R.; Ningal, T.F.; Tiwary, A.; Grote, R.; Fares, S.; Saaroni, H.; Hiemstra, J.A.; Zhiyanski, M.; Vilhar, U.; Cariñanos, P.; et al. Species-Specific Information for Enhancing Ecosystem Services. In The Urban Forest: Cultivating Green Infrastructure for People and the Environment; Pearlmutter, D., Calfapietra, C., Samson, R., O’Brien, L., Ostoić, S.K., Sanesi, G., del Amo, R.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 111–144. [Google Scholar] [CrossRef]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landsc. Urban Plan. 2017, 157, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Conte, A.; Zappitelli, I.; Fusaro, L.; Alivernini, A.; Moretti, V.; Sorgi, T.; Recanatesi, F.; Fares, S. Significant Loss of Ecosystem Services by Environmental Changes in the Mediterranean Coastal Area. Forests 2022, 13, 689. [Google Scholar] [CrossRef]
- Fares, S.; Alivernini, A.; Conte, A.; Maggi, F. Ozone and particle fluxes in a Mediterranean forest predicted by the AIRTREE model. Sci. Total. Environ. 2019, 682, 494–504. [Google Scholar] [CrossRef]
- Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environ. Pollut. 2013, 183, 71–80. [Google Scholar] [CrossRef]
- Anderegg, L.D.L.; Griffith, D.M.; Cavender-Bares, J.; Riley, W.J.; Berry, J.A.; Dawson, T.E.; Still, C.J. Representing plant diversity in land models: An evolutionary approach to make “Functional Types” more functional. Glob. Chang. Biol. 2022, 28, 2541–2554. [Google Scholar] [CrossRef] [PubMed]
- Recanatesi, F.; Giuliani, C.; Ripa, M.N. Monitoring Mediterranean Oak Decline in a Peri-Urban Protected Area Using the NDVI and Sentinel-2 Images: The Case Study of Castelporziano State Natural Reserve. Sustainability 2018, 10, 3308. [Google Scholar] [CrossRef] [Green Version]
- Kamenova, L.; Dimitrov, P. Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCover of winter wheat in Bulgaria. Eur. J. Remote Sens. 2021, 54, 89–108. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, B.; Zhou, J.; Hu, C.; Tan, W.; Hu, Z.; Wu, J. Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution Remote Sensing images. Front. Earth Sci. 2013, 7, 43–54. [Google Scholar] [CrossRef]
- Xu, X.; Xia, J.; Gao, Y.; Zheng, W. Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Green. 2020, 48, 126559. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote sensing of urban green spaces: A review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Kowe, P.; Mutanga, O.; Dube, T. Advancements in the remote sensing of landscape pattern of urban green spaces and vegetation fragmentation. Int. J. Remote Sens. 2021, 42, 3797–3832. [Google Scholar] [CrossRef]
- Bai, H.; Li, Z.; Guo, H.; Chen, H.; Luo, P. Urban Green Space Planning Based on Remote Sensing and Geographic Information Systems. Remote Sens. 2022, 14, 4213. [Google Scholar] [CrossRef]
- Fares, S.; Conte, A.; Alivernini, A.; Chianucci, F.; Grotti, M.; Zappitelli, I.; Petrella, F.; Corona, P. Testing Removal of Carbon Dioxide, Ozone, and Atmospheric Particles by Urban Parks in Italy. Environ. Sci. Technol. 2020, 54, 14910–14922. [Google Scholar] [CrossRef]
- Remote Sensing for Sustainable Forest Management|Steven E. Franklin. Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781420032857/remote-sensing-sustainable-forest-management-steven-franklin (accessed on 24 December 2022).
- Desiato, F.; Lena, F.; Baffo, F.; Suatoni, B.; Toreti, A. Indicatori del CLIMA in Italia Released by ISPRA. Available online: http://www.scia.isprambiente.it/wwwrootscia/Documentazione/Indicatori%20del%20clima%20in%20Italia.pdf (accessed on 26 January 2022).
- Koppen, W. Das geographische System der Klimat. Handb. Klimatol. 1936, 0, 46. Available online: https://cir.nii.ac.jp/crid/1573950399009743360 (accessed on 23 December 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Mircea, M.; Ciancarella, L.; Briganti, G.; Calori, G.; Cappelletti, A.; Cionni, I.; Costa, M.; Cremona, G.; D’Isidoro, M.; Finardi, S.; et al. Assessment of the AMS-MINNI system capabilities to simulate air quality over Italy for the calendar year 2005. Atmos. Environ. 2014, 84, 178–188. [Google Scholar] [CrossRef]
- Mircea, M.; Grigoras, G.; D’Isidoro, M.; Righini, G.; Adani, M.; Briganti, G.; Cremona, G.; Ciancarella, L.; Cappelletti, A.; Calori, G.; et al. Impact of Grid Resolution on Aerosol Predictions: A Case Study over Italy. Aerosol Air Qual. Res. 2016, 16, 1253–1267. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Silibello, C.; Calori, G.; Brusasca, G.; Giudici, A.; Angelino, E.; Fossati, G.; Peroni, E.; Buganza, E. Modelling of PM10 concentrations over Milano urban area using two aerosol modules. Environ. Model. Softw. 2008, 23, 333–343. [Google Scholar] [CrossRef]
- De la Paz, D.; de Andrés, J.M.; Narros, A.; Silibello, C.; Finardi, S.; Fares, S.; Tejero, L.; Borge, R.; Mircea, M. Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid. Forests 2022, 13, 690. [Google Scholar] [CrossRef]
- Hemery, G.E.; Savill, P.S.; Pryor, S.N. Applications of the crown diameter–stem diameter relationship for different species of broadleaved trees. For. Ecol. Manag. 2005, 215, 285–294. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, VA, USA, 2018.
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. Available online: https://hrcak.srce.hr/89395 (accessed on 24 December 2022). [CrossRef]
- Petropoulos, G.P.; Kalaitzidis, C.; Vadrevu, K.P. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012, 41, 99–107. [Google Scholar] [CrossRef]
- Ball, T.; Woodrow, I.E.; Berry, J.A. A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In Progress in Photosynthesis Research: Volume 4, Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, 10–15 August 1986; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 221–224. [Google Scholar] [CrossRef]
- Caldwell, M.; Pearce, R. Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Keenan, T.; Sabate, S.; Gracia, C. Soil water stress and coupled photosynthesis–conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agric. For. Meteorol. 2010, 150, 443–453. [Google Scholar] [CrossRef]
- Lombardozzi, D.; Levis, S.; Bonan, G.; Sparks, J.P. Predicting photosynthesis and transpiration responses to ozone: Decoupling modeled photosynthesis and stomatal conductance. Biogeosciences 2012, 9, 3113–3130. [Google Scholar] [CrossRef] [Green Version]
- Lombardozzi, D.; Sparks, J.P.; Bonan, G. Integrating O3 influences on terrestrial processes: Photosynthetic and stomatal response data available for regional and global modeling. Biogeosciences 2013, 10, 6815–6831. [Google Scholar] [CrossRef]
- Lombardozzi, D.; Levis, S.; Bonan, G.; Hess, P.G.; Sparks, J.P. The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles. J. Clim. 2015, 28, 292–305. [Google Scholar] [CrossRef]
- Conte, A.; Otu-Larbi, F.; Alivernini, A.; Hoshika, Y.; Paoletti, E.; Ashworth, K.; Fares, S. Exploring new strategies for ozone-risk assessment: A dynamic-threshold case study. Environ. Pollut. 2021, 287, 117620. [Google Scholar] [CrossRef] [PubMed]
- Hochman, H.M.; Rodgers, J.D. Pareto Optimal Redistribution. Am. Econ. Rev. 1969, 59, 542–557. Available online: https://www.jstor.org/stable/1813216 (accessed on 27 December 2022).
- Street Trees in Italian Cities: Story, Biodiversity and Integration within the Urban Environment|SpringerLink. Available online: https://link.springer.com/article/10.1007/s12210-020-00907-9 (accessed on 23 December 2022).
- Li, Y.Y.; Wang, X.R.; Huang, C.L. Key street tree species selection in urban areas. Afr. J. Agric. Res. 2011, 15, 3539–3550. [Google Scholar] [CrossRef]
- Smithers, R.J.; Doick, K.J.; Burton, A.; Sibille, R.; Steinbach, D.; Harris, R.; Groves, L.; Blicharska, M. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 2018, 21, 851–862. [Google Scholar] [CrossRef]
- González-Cásares, M.; Pompa-García, M.; Vetnegas-González, A.; Domínguez-Calleros, P.; Hernández-Díaz, J.; Carrillo-Parra, A.; Tagle, M.A.G. Hydroclimatic variations reveal differences in carbon capture in two sympatric conifers in northern Mexico. PeerJ 2019, 7, e7085. [Google Scholar] [CrossRef]
- Muhammad, S.; Wuyts, K.; Samson, R. Species-specific dynamics in magnetic PM accumulation and immobilization for six deciduous and evergreen broadleaves. Atmos. Pollut. Res. 2022, 13, 101377. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating Ecosystem Services of forests in ten Italian Metropolitan Cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. The Capture of Particulate Pollution by Trees at Five Contrasting Urban Sites. Arboric. J. 2000, 24, 209–230. [Google Scholar] [CrossRef]
- Bottalico, F.; Travaglini, D.; Chirici, G.; Garfì, V.; Giannetti, F.; De Marco, A.; Fares, S.; Marchetti, M.; Nocentini, S.; Paoletti, E.; et al. A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban For. Urban Green. 2017, 27, 221–234. [Google Scholar] [CrossRef]
- Baraldi, R.; Chieco, C.; Neri, L.; Facini, O.; Rapparini, F.; Morrone, L.; Rotondi, A.; Carriero, G. An integrated study on air mitigation potential of urban vegetation: From a multi-trait approach to modeling. Urban For. Urban Green. 2019, 41, 127–138. [Google Scholar] [CrossRef]
- Sanusi, R.; Livesley, S.J. London Plane trees (Platanus x acerifolia) before, during and after a heatwave: Losing leaves means less cooling benefit. Urban For. Urban Green. 2020, 54, 126746. [Google Scholar] [CrossRef]
- Coulston, J.W.; Smith, G.C.; Smith, W.D. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants. Environ. Monit. Assess. 2003, 83, 113–127. [Google Scholar] [CrossRef]
- Ma, X.; Zou, Q.; Liu, M.; Li, J. Comparative Research on Typical Measure Methods of the Carbon Sequestration Benefits of Urban Trees Based on the UAV and the 3D Laser: Evidence from Shanghai, China. Forests 2022, 13, 640. [Google Scholar] [CrossRef]
- Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5)|Scientific Reports. Available online: https://www.nature.com/articles/s41598-017-03360-1 (accessed on 24 December 2022).
- Paoletti, E. Ozone and urban forests in Italy. Environ. Pollut. 2009, 157, 1506–1512. [Google Scholar] [CrossRef]
- Nali, C.; Ferretti, M.; Pellegrini, M.; Lorenzini, G. Monitoring and Biomonitoring of Surface Ozone in Florence, Italy. Environ. Monit. Assess. 2001, 69, 159–174. [Google Scholar] [CrossRef]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving Air Quality in the Po Valley, Italy: Some Results by the LIFE-IP-PREPAIR Project. Atmosphere 2020, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Quah, A.K.; Roth, M. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmos. Environ. 2012, 46, 92–103. [Google Scholar] [CrossRef]
- Ostoić, S.K.; Salbitano, F.; Borelli, S.; Verlič, A. Urban forest research in the Mediterranean: A systematic review. Urban For. Urban Green. 2018, 31, 185–196. [Google Scholar] [CrossRef]
- Barbati, A.; Marchetti, M.; Chirici, G.; Corona, P. European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation. For. Ecol. Manag. 2014, 321, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Bentsen, P.; Lindholst, A.C.; Konijnendijk, C.C. Reviewing eight years of Urban Forestry & Urban Greening: Taking stock, looking ahead. Urban For. Urban Green. 2010, 9, 273–280. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 1998, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A Covid19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 115682. [Google Scholar] [CrossRef]
- Nespor, S. La Lunga Marcia Per Un Accordo Globale Sul Clima: Dal Protocollo Di Kyoto All’accordo Di Parigi. Riv. Trimest. Dirit. Pubblico 2016, 1, 81–121. [Google Scholar]
- Pilli, R.; Anfodillo, T.; Dalla Valle, E. Stima del Carbonio in foresta: Metodologie ed aspetti normativi. Pubblicazione del Corso di Cultura in Ecologia. Atti 2006, 42, 161–183. [Google Scholar]
- Romano, S. L’implementazione della Strategia Forestale Nazionale a livello locale: Un’opportunità importante, non facile da cogliere. For. J. Silvic. For. Ecol. 2020, 17, 58. [Google Scholar] [CrossRef]
Digital Number | Name |
---|---|
1 | Barren or sparsely vegetated |
2 | Croplands |
3 | Deciduous Broadleaf treed areas |
4 | Evergreen Broadleaf treed areas |
5 | Evergreen Needleleaf treed areas |
6 | Grasslands |
7 | Shrubs |
8 | Urban and built_up |
9 | Water |
Band | Resolution | Central Wavelength | Description |
---|---|---|---|
B2 | 10 m | 490 nm | Blue |
B3 | 10 m | 560 nm | Green |
B4 | 10 m | 665 nm | Red |
B5 | 20 m | 705 nm | Visible and Near Infrared (VNIR) |
B6 | 20 m | 740 nm | Visible and Near Infrared (VNIR) |
B7 | 20 m | 783 nm | Visible and Near Infrared (VNIR) |
B8 | 10 m | 842 nm | Visible and Near Infrared (VNIR) |
B8a | 20 m | 865 nm | Visible and Near Infrared (VNIR) |
Species | Number of Individuals | d.b.h. | Height | Mean NPP | Mean O3 | Mean PM10 | Mean PM2.5 | Mean NO2 |
---|---|---|---|---|---|---|---|---|
cm | m | g CO2 m2 y−1 | g m2 y−1 | g m2 y−1 | g m2 y−1 | g m2 y−1 | ||
Platanus x acerifolia | 16,510 | 51 | 17 | 1008.417 | 1.018 | 2.688 | 0.356 | 0.395 |
Celtis australis | 12,632 | 53 | 15 | 582.344 | 0.924 | 1.927 | 0.257 | 0.336 |
Acer platanoides | 12,357 | 32 | 10 | 849.697 | 0.898 | 2.113 | 0.283 | 0.350 |
Carpinus betulus | 11,812 | 25 | 8 | 530.409 | 0.785 | 1.935 | 0.263 | 0.322 |
Robinia pseudoacacia | 11,133 | 33 | 10 | 539.993 | 0.823 | 2.088 | 0.286 | 0.327 |
Populus nigra | 10,249 | 60 | 16 | 810.649 | 0.971 | 2.510 | 0.342 | 0.375 |
Liquidambar styraciflua | 8492 | 29 | 10 | 674.763 | 0.855 | 2.126 | 0.284 | 0.342 |
Prunus cerasifera | 7332 | 24 | 5 | 249.012 | 0.613 | 1.445 | 0.193 | 0.282 |
Ulmus spp. | 6843 | 41 | 14 | 792.059 | 0.917 | 2.515 | 0.338 | 0.367 |
Fraxinus excelsior | 6837 | 25 | 7 | 503.281 | 0.769 | 1.720 | 0.233 | 0.315 |
Quercus rubra | 6798 | 39 | 14 | 1023.284 | 0.978 | 2.448 | 0.329 | 0.376 |
Acer pseudoplatanus | 6750 | 30 | 9 | 598.583 | 0.796 | 2.073 | 0.275 | 0.331 |
Platanus spp. | 6599 | 48 | 18 | 1025.470 | 0.997 | 2.921 | 0.376 | 0.405 |
Acer negundo | 5832 | 36 | 10 | 672.343 | 0.838 | 2.146 | 0.287 | 0.340 |
Tilia spp. | 5780 | 39 | 14 | 745.138 | 0.906 | 2.469 | 0.329 | 0.360 |
Quercus robur | 5760 | 32 | 12 | 874.515 | 0.914 | 2.321 | 0.312 | 0.359 |
Acer saccharinum | 5689 | 35 | 10 | 667.615 | 0.836 | 2.142 | 0.287 | 0.338 |
Prunus serrulata | 5567 | 16 | 4.5 | 142.167 | 0.571 | 1.360 | 0.180 | 0.272 |
Tilia cordata | 5352 | 38.20 | 12 | 694.857 | 0.878 | 2.283 | 0.306 | 0.347 |
Aesculus hippocastanum | 4905 | 46 | 14 | 715.952 | 0.905 | 2.524 | 0.334 | 0.364 |
Liriodendron tulipifera | 4751 | 25 | 8 | 487.146 | 0.769 | 1.906 | 0.254 | 0.319 |
Cercis siliquastrum | 4225 | 30 | 6 | 445.550 | 0.695 | 1.653 | 0.219 | 0.304 |
Ulmus pumila | 4183 | 46 | 15 | 1024.465 | 1.006 | 2.708 | 0.356 | 0.399 |
Ailanthus altissima | 3345 | 44 | 12 | 654.776 | 0.864 | 2.346 | 0.314 | 0.350 |
Prunus avium | 2938 | 24 | 6 | 290.794 | 0.655 | 1.655 | 0.220 | 0.291 |
Platanus x hybrida | 2799 | 49 | 17 | 1011.862 | 0.990 | 2.853 | 0.368 | 0.405 |
Prunus spp. | 2594 | 20.5 | 5 | 209.672 | 0.607 | 1.431 | 0.191 | 0.276 |
Pyrus calleryana | 2585 | 13 | 5 | 148.155 | 0.584 | 1.509 | 0.199 | 0.277 |
Ulmus carpinifolia | 2566 | 47 | 15 | 808.942 | 0.919 | 2.667 | 0.356 | 0.381 |
Tilia americana | 2557 | 43 | 13 | 721.477 | 0.894 | 2.449 | 0.324 | 0.361 |
Species | Number of Individuals | d.b.h. | Height | Mean NPP | Mean O3 | Mean PM10 | Mean PM2.5 | Mean NO2 |
---|---|---|---|---|---|---|---|---|
cm | m | g CO2 m2 y−1 | g m2 y−1 | g m2 y−1 | g m2 y−1 | g m2 y−1 | ||
Celtis australis | 8135 | 23.5 | 9 | 337.942 | 0.908 | 0.496 | 0.102 | 0.323 |
Platanus x acerifolia | 6485 | 40 | 19.5 | 1033.446 | 1.252 | 0.862 | 0.178 | 0.451 |
Tilia x intermedia | 4857 | 23.5 | 9 | 492.788 | 0.978 | 0.638 | 0.131 | 0.353 |
Fraxinus excelsior | 4031 | 7.5 | 5 | 244.090 | 0.845 | 0.448 | 0.093 | 0.318 |
Acer campestre | 3819 | 7.5 | 5 | 216.256 | 0.810 | 0.449 | 0.093 | 0.313 |
Aesculus hippocastanum | 3270 | 23.5 | 9 | 468.190 | 0.940 | 0.651 | 0.133 | 0.361 |
Populus nigra | 3177 | 80.43 | 23.94 | 862.381 | 1.211 | 0.965 | 0.200 | 0.477 |
Quercus robur | 2361 | 7.5 | 5 | 302.873 | 0.851 | 0.451 | 0.093 | 0.324 |
Populus alba | 2222 | 14 | 5 | 221.588 | 0.797 | 0.451 | 0.093 | 0.326 |
Fraxinus angustifolia | 1817 | 7.5 | 5 | 224.888 | 0.775 | 0.462 | 0.095 | 0.326 |
Cercis siliquastrum | 1643 | 7.5 | 5 | 223.370 | 0.787 | 0.458 | 0.094 | 0.316 |
Styphonolobium japonicum | 1641 | 23.5 | 9 | 335.382 | 0.876 | 0.782 | 0.162 | 0.358 |
Tilia platyphyllos | 1567 | 7.5 | 5 | 182.188 | 0.772 | 0.456 | 0.094 | 0.315 |
Cedrus deodara | 1461 | 59 | 19.5 | 2594.612 | 1.251 | 11.476 | 2.526 | 0.463 |
Tilia cordata | 1401 | 7.5 | 5 | 184.095 | 0.772 | 0.452 | 0.093 | 0.308 |
Robinia pseudoacacia | 1345 | 17 | 9 | 386.954 | 0.966 | 0.670 | 0.139 | 0.358 |
Acer negundo | 1189 | 23.5 | 9 | 529.712 | 0.934 | 0.670 | 0.138 | 0.372 |
Fraxinus ornus | 1075 | 7.5 | 5 | 222.708 | 0.785 | 0.462 | 0.095 | 0.316 |
Carpinus betulus | 1058 | 12.5 | 9 | 447.757 | 0.942 | 0.716 | 0.148 | 0.385 |
Acer pseudoplatanus | 899 | 23.5 | 9 | 541.095 | 0.975 | 0.657 | 0.135 | 0.357 |
Cupressus sempervirens | 880 | 23.5 | 9 | 2244.193 | 1.432 | 6.170 | 1.359 | 0.453 |
Quercus ilex | 873 | 7.5 | 5 | 155.846 | 0.695 | 2.588 | 0.558 | 0.268 |
Ulmus carpinifolia | 860 | 23.5 | 9 | 521.669 | 0.962 | 0.681 | 0.141 | 0.365 |
Acer platanoides | 770 | 7.5 | 5 | 324.786 | 0.816 | 0.452 | 0.093 | 0.325 |
Morus nigra | 707 | 7.5 | 5 | 196.303 | 0.681 | 0.455 | 0.094 | 0.275 |
Cedrus atlantica | 706 | 59 | 19.5 | 2581.468 | 1.336 | 11.630 | 2.548 | 0.479 |
Pinus pinea | 647 | 40 | 9 | 1071.029 | 1.083 | 5.614 | 1.229 | 0.384 |
Prunus avium | 626 | 14 | 5 | 141.520 | 0.751 | 0.474 | 0.098 | 0.318 |
Pinus nigra | 586 | 23.5 | 9 | 979.277 | 0.908 | 5.062 | 1.109 | 0.351 |
Acer saccharinum | 471 | 12.5 | 9 | 441.598 | 0.927 | 0.679 | 0.140 | 0.389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zappitelli, I.; Conte, A.; Alivernini, A.; Finardi, S.; Fares, S. Species-Specific Contribution to Atmospheric Carbon and Pollutant Removal: Case Studies in Two Italian Municipalities. Atmosphere 2023, 14, 285. https://doi.org/10.3390/atmos14020285
Zappitelli I, Conte A, Alivernini A, Finardi S, Fares S. Species-Specific Contribution to Atmospheric Carbon and Pollutant Removal: Case Studies in Two Italian Municipalities. Atmosphere. 2023; 14(2):285. https://doi.org/10.3390/atmos14020285
Chicago/Turabian StyleZappitelli, Ilaria, Adriano Conte, Alessandro Alivernini, Sandro Finardi, and Silvano Fares. 2023. "Species-Specific Contribution to Atmospheric Carbon and Pollutant Removal: Case Studies in Two Italian Municipalities" Atmosphere 14, no. 2: 285. https://doi.org/10.3390/atmos14020285