Scots Pines (Pinus sylvestris) as Sources of Biological Ice-Nucleating Macromolecules (INMs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acquisition
2.2. Sample Preparation
2.2.1. Powder Extracts
2.2.2. Surface Extracts
2.2.3. Rain Samples
2.3. Ice Nucleation Assay
Data Analysis
3. Results
3.1. INM Distribution in Bark, Branch Wood and Needle Powder Extracts
3.2. INM Distribution on the Surface of Bark, Branch Wood and Needles
3.3. The Effect of Precipitation on the Release of INMs from Pines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Pine | ||||||
---|---|---|---|---|---|---|
Bark | Branch wood | Needles | Bark | Branch wood | Needles | |
A | 1.4 × 108 | 2.8 × 105 | 6.5 × 107 | 3.8 × 108 | 1.6 × 107 | 1.4 × 108 |
B | 1.1 × 107 | 6.7 × 108 | 3.1 × 108 | 7.5 × 107 | 1.8 × 109 | 1.4 × 109 |
C | 1.1 × 107 | 2.7 × 108 | 1.8 × 109 | 9.4 × 107 | 9.2 × 108 | 7.3 × 109 |
D | 9.8 × 105 | 1.3 × 108 | 1.3 × 107 | 1.1 × 107 | 1.0 × 109 | 1.3 × 108 |
E | 4.9 × 108 | 6.6 × 107 | 1.9 × 107 | 1.3 × 109 | 3.0 × 108 | 2.8 × 108 |
F | 2.4 × 105 | 5.9 × 106 | 9.8 × 106 | 3.2 × 106 | 6.9 × 107 | 1.8 × 108 |
Pine | ||||||
---|---|---|---|---|---|---|
Bark | Branch wood | Needles | Bark | Branch wood | Needles | |
A | 2.6 × 108 | 2.8 × 108 | 5.6 × 105 | 1.7 × 109 | 5.2 × 108 | 3.6 × 106 |
B | 4.8 × 107 | 1.7 × 108 | 5.8 × 104 | 2.0 × 108 | 4.5 × 108 | 7.8 × 105 |
C | 2.1 × 106 | 1.4 × 107 | 1.4 × 105 | 9.9 × 107 | 6.5 × 108 | 4.1 × 106 |
D | 2.7 × 106 | 6.4 × 106 | 6.3 × 104 | 5.2 × 107 | 2.2 × 107 | 1.3 × 105 |
E | 6.7 × 105 | 1.6 × 107 | 2.3 × 105 | 1.4 × 107 | 5.0 × 107 | 4.6 × 105 |
F | 6.1 × 106 | 3.0 × 107 | 4.9 × 105 | 5.6 × 107 | 6.2 × 107 | 1.1 × 106 |
Rain Sampler | ||||||
---|---|---|---|---|---|---|
Pine A | Pine B | Pine C | Pine A | Pine B | Pine C | |
#1 | 2.6 × 106 | 5.5 × 106 | 1.7 × 106 | 1.8 × 107 | 3.7 × 107 | 7.3 × 107 |
#2 | 2.4 × 106 | 5.3 × 105 | 1.7 × 107 | 2.4 × 107 | 2.1 × 107 | 9.6 × 107 |
#3 | 1.6 × 106 | 2.4 × 106 | 1.3 × 106 | 4.1 × 106 | 5.7 × 107 | 3.0 × 107 |
Appendix C. Estimation Calculation of INMs per m2 Pine Stand
- We did not account for branch wood, as the estimation for branch wood area of a tree in general is quite hard to find and uncertain. We also believe that this is to some extent likely already accounted for in the LAI, since it is often an optical measure of how much light passes through a tree canopy and therefore branch wood likely plays a role in this. However, we decided to only use the needle surface concentrations in combination with the LAI.
- The surface roughness was also not accounted for. Still, we believe the likely underestimation by not accounting for roughness is partly compensated by the overestimation of the cylindrical shape we used for the bark area, as the trunk diameter likely decreases with height, and diameters are usually measured at one meter above the ground.
- Lastly, we decided to estimate a maximum to minimum range from our results and the literature data. We think this gives a better overview compared to a single average value.
References
- Safford, H.D.; Vallejo, V.R. Ecosystem management and ecological restoration in the anthropocene: Integrating global change, soils, and disturbance in boreal and mediterranean forests. Dev. Soil Sci. 2019, 36, 259–308. [Google Scholar]
- Després, V.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J. Wind pollination—A study in controlled chaos: Aerodynamic studies of wind-pollinated plants reveal a high degree of control in the apparently random process of pollen capture. Am. Sci. 1985, 73, 462–470. [Google Scholar]
- Hallar, A.G.; Chirokova, G.; McCubbin, I.; Painter, T.H.; Wiedinmyer, C.; Dodson, C. Atmospheric bioaerosols transported via dust storms in the western united states. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, D.; Murray, B.J.; Ross, J.F.; Whale, T.F.; Price, H.C.; Atkinson, J.D.; Umo, N.S.; Webb, M.E. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 2015, 5, 8082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruppbacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation, 2nd ed.; Kluwer Academic Publishers: Norwell, MA, USA, 1997. [Google Scholar]
- Storelvmo, T.; Hoose, C.; Eriksson, P. Global modeling of mixed-phase clouds: The albedo and lifetime effects of aerosols. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Matus, A.V.; L’Ecuyer, T.S. The role of cloud phase in earth’s radiation budget. J. Geophys. Res. Atmos. 2017, 122, 2559–2578. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Sherwood, S.; Wood, R.; Donner, L. Atmospheric science. Climate effects of aerosol-cloud interactions. Science 2014, 343, 379–380. [Google Scholar] [CrossRef]
- Lau, K.M.; Wu, H.T. Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Atkinson, J.D.; Murray, B.J.; Woodhouse, M.T.; Whale, T.F.; Baustian, K.J.; Carslaw, K.S.; Dobbie, S.; O’Sullivan, D.; Malkin, T.L. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 2013, 498, 355–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoose, C.; Vogel, H.; Vogel, B.; Möhler, O.; Niemand, M.; Connolly, P.; Klein, H.; Bingemer, H.; DeMott, P.; Skrotzki, J.; et al. A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci. 2012, 69, 3077–3092. [Google Scholar]
- Kamphus, M.; Ettner-Mahl, M.; Klimach, T.; Drewnick, F.; Keller, L.; Cziczo, D.J.; Mertes, S.; Borrmann, S.; Curtius, J. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the cloud and aerosol characterization experiment (clace 6). Atmos. Chem. Phys. 2010, 10, 8077–8095. [Google Scholar] [CrossRef] [Green Version]
- Kanitz, T.; Seifert, P.; Ansmann, A.; Engelmann, R.; Althausen, D.; Casiccia, C.; Rohwer, E.G. Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Wex, H.; Huang, L.; Zhang, W.; Hung, H.; Traversi, R.; Becagli, S.; Sheesley, R.J.; Moffett, C.E.; Barrett, T.E.; Bossi, R.; et al. Annual variability of ice-nucleating particle concentrations at different arctic locations. Atmos. Chem. Phys. 2019, 19, 5293–5311. [Google Scholar] [CrossRef] [Green Version]
- Paramonov, M.; Drossaart van Dusseldorp, S.; Gute, E.; Abbatt, J.P.D.; Heikkilä, P.; Keskinen, J.; Chen, X.; Luoma, K.; Heikkinen, L.; Hao, L.; et al. Condensation/immersion mode ice-nucleating particles in a boreal environment. Atmos. Chem. Phys. 2020, 20, 6687–6706. [Google Scholar] [CrossRef]
- Seifried, T.M.; Bieber, P.; Kunert, A.T.; Schmale, D.G.; Whitmore, K.; Fröhlich-Nowoisky, J.; Grothe, H. Ice nucleation activity of alpine bioaerosol emitted in vicinity of a birch forest. Atmosphere 2021, 12, 779. [Google Scholar] [CrossRef]
- Burke, M.; Gusta, L.; Quamme, H.; Weiser, C.; Li, P. Freezing and injury in plants. Ann. Rev. Plant Physiol. 1976, 27, 507–528. [Google Scholar] [CrossRef]
- Storey, J.M.; Storey, K.B. Cold hardiness and freeze tolerance, functional metabolism: Regulation and adaptation. In Functional Metabolism: Regulation and Adaptation; Wiley-Liss: Hoboken, NJ, USA, 2005. [Google Scholar]
- Pearce, R. Plant freezing and damage. Ann. Bot. 2001, 87, 417–424. [Google Scholar] [CrossRef]
- Sakai, A.; Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress; Springer: Berlin/Heidelberg, Germany; p. 1987.
- Ishikawa, M.; Sakai, A. Freezing avoidance mechanisms by supercooling in some rhododendron flower buds with reference to water relations. Plant Cell Physiol. 1981, 22, 953–967. [Google Scholar]
- Felgitsch, L.; Baloh, P.; Burkart, J.; Mayr, M.; Momken, M.E.; Seifried, T.M.; Winkler, P.; Schmale, D.G.; Grothe, H. Birch leaves and branches as a source of ice-nucleating macromolecules. Atmos. Chem. Phys. 2018, 18, 953–967. [Google Scholar] [CrossRef] [Green Version]
- Soulage, G. Counting and electron microscope study of european ice nuclei. J. De Rech. Atmosphériques 1966, 2, 219–229. [Google Scholar]
- Pummer, B.G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys. 2012, 12, 2541–2550. [Google Scholar] [CrossRef] [Green Version]
- Pummer, B.G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C.J.; Huber, R.G.; Liedl, K.R.; Loerting, T.; Moschen, T.; et al. Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys. 2015, 15, 2541–2550. [Google Scholar] [CrossRef] [Green Version]
- Seifried, T.M.; Bieber, P.; Felgitsch, L.; Vlasich, J.; Reyzek, F.; Schmale, D.G.; Grothe, H. Surfaces of silver birch (Betula pendula) are sources of biological ice nuclei: In vivo and in situ investigations. Biogeosciences 2020, 17, 5655–5667. [Google Scholar] [CrossRef]
- Dreischmeier, K.; Budke, C.; Wiehemeier, L.; Kottke, T.; Koop, T. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Sci. Rep. 2017, 7, 41890. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.J.; O’sullivan, D.; Atkinson, J.D.; Webb, M.E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vali, G. Quantitative evaluation of experimental results an the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 1971, 28, 402–409. [Google Scholar] [CrossRef]
- Diehl, K.; Quick, C.; Matthias-Maser, S.; Mitra, S.K.; Jaenicke, R. The ice nucleating ability of pollen part i: Laboratory studies in deposition and condensation freezing modes. Atmos. Res. 2001, 58, 75–87. [Google Scholar] [CrossRef]
- Hoose, C.; Kristjánsson, J.E.; Burrows, S.M. How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett. 2010, 5, 024009. [Google Scholar] [CrossRef]
- Hoose, C.; Kristjánsson, J.E.; Chen, J.-P.; Hazra, A. A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci. 2010, 67, 2483–2503. [Google Scholar] [CrossRef]
- Burkart, J.; Gratzl, J.; Seifried, T.M.; Bieber, P.; Grothe, H. Isolation of subpollen particles (spps) of birch: Spps are potential carriers of ice nucleating macromolecules. Biogeosciences 2021, 18, 5751–5765. [Google Scholar] [CrossRef]
- Werchner, S.; Gute, E.; Hoose, C.; Kottmeier, C.; Pauling, A.; Vogel, H.; Vogel, B. When do subpollen particles become relevant for ice nucleation processes in clouds? J. Geophys. Res. Atmos. 2022, 127, e2021JD036340. [Google Scholar] [CrossRef]
- Kunert, A.T.; Lamneck, M.; Helleis, F.; Pöschl, U.; Pöhlker, M.L.; Fröhlich-Nowoisky, J. Twin-plate ice nucleation assay (tina) with infrared detection for high-throughput droplet freezing experiments with biological ice nuclei in laboratory and field samples. Atmos. Meas. Tech. 2018, 11, 6327–6337. [Google Scholar] [CrossRef] [Green Version]
- Pouleur, S.; Richard, C.; Martin, J.; Antoun, H. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol. 1992, 58, 2960–2964. [Google Scholar] [CrossRef] [Green Version]
- Maki, L.R.; Galyan, E.L.; Chang-Chien, M.M.; Caldwell, D.R. Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 1974, 28, 456–459. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Hill, T.C.J.; Pummer, B.G.; Yordanova, P.; Franc, G.D.; Pöschl, U. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 2015, 12, 1057–1071. [Google Scholar] [CrossRef] [Green Version]
- Oros, D.R.; Standley, L.J.; Chen, X.; Simoneit, B.R.T. Epicuticular wax compositions of predominant conifers of western north america. Z. Fuer Nat. C 1999, 54, 17–24. [Google Scholar] [CrossRef]
- Joung, Y.S.; Ge, Z.; Buie, C.R. Bioaerosol generation by raindrops on soil. Nat. Commun. 2017, 8, 14668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, J.A.; Prenni, A.J.; DeMott, P.J.; Pöhlker, C.; Mason, R.H.; Robinson, N.H.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V.R.; Garcia, E.; et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 2013, 13, 6151–6164. [Google Scholar] [CrossRef] [Green Version]
- Vasebi, Y.; Mechan Llontop, M.E.; Hanlon, R.; Schmale Iii, D.G.; Schnell, R.; Vinatzer, B.A. Comprehensive characterization of an aspen (Populus tremuloides) leaf litter sample that maintained ice nucleation activity for 48 years. Biogeosciences 2019, 16, 1675–1683. [Google Scholar] [CrossRef] [Green Version]
- Schnell, R.C.; Vali, G. Biogenic ice nuclei: Part i. Terrestrial and marine sources. J. Atmos. Sci. 1976, 33, 1554–1564. [Google Scholar] [CrossRef]
- Xiao, C.-W.; Janssens, I.A.; Curiel Yuste, J.; Ceulemans, R. Variation of specific leaf area and upscaling to leaf area index in mature scots pine. Trees 2006, 20, 304–310. [Google Scholar] [CrossRef]
- Jonckheere, I.; Muys, B.; Coppin, P. Allometry and evaluation of in situ optical lai determination in scots pine: A case study in belgium. Tree Physiol. 2005, 25, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Soudani, K.; Trautmann, J.; Walter, J.M.N. Leaf area index and canopy stratification in scots pine (Pinus sylvestris L.) stands. Int. J. Remote Sens. 2002, 23, 3605–3618. [Google Scholar] [CrossRef]
- Urban, J.; Rubtsov, A.V.; Urban, A.V.; Shashkin, A.V.; Benkova, V.E. Canopy transpiration of a larix sibirica and pinus sylvestris forest in central siberia. Agric. For. Meteorol. 2019, 271, 64–72. [Google Scholar] [CrossRef]
- Kuusk, A.; Lang, M.; Kuusk, J. Database of optical and structural data for the validation of forest radiative transfer models. In Light Scattering Reviews 7; Springer: Berlin/Heidelberg, Germany, 2013; pp. 109–148. [Google Scholar]
- Smolander, H.; Stenberg, P. Response of lai-2000 estimates to changes in plant surface area index in a scots pine stand. Tree Physiol. 1996, 16, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krakau, U.-K.; Liesebach, M.; Aronen, T.; Lelu-Walter, M.-A.; Schneck, V. Scots pine (Pinus sylvestris L.). In Forest Tree Breeding in Europe; Pâques, L.E., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 25, pp. 267–323. [Google Scholar]
- Yun, J.; Evoy, E.; Worthy, S.E.; Fraser, M.; Veber, D.; Platt, A.; Rawlings, K.; Sharma, S.; Leaitch, W.R.; Bertram, A. Ice nucleating particles in the canadian high arctic during the fall of 2018. Environ. Sci. Atmos. 2022, 2, 279–290. [Google Scholar] [CrossRef]
- Wang, B.; Harder, T.H.; Kelly, S.T.; Piens, D.S.; China, S.; Kovarik, L.; Keiluweit, M.; Arey, B.W.; Gilles, M.K.; Laskin, A. Airborne soil organic particles generated by precipitation. Nat. Geosci. 2016, 9, 433–437. [Google Scholar] [CrossRef]
- Kim, S.; Wu, Z.; Esmaili, E.; Dombroskie, J.J.; Jung, S. How a raindrop gets shattered on biological surfaces. Proc. Natl. Acad. Sci. USA 2020, 117, 13901–13907. [Google Scholar] [CrossRef]
Sample ID | Collection Date | GPS Waypoints Longitude, Latitude (°) | Altitude (m) | Circumference of Trunk at 1 m (cm) | Tree Cadastre * | Weather Conditions |
---|---|---|---|---|---|---|
Pine A | 28 January 2020 | 48.238220, 16.405210 | 166 | 52 | 13088A | rainy |
Pine B | 14 February 2020 | 48.211290, 16.400590 | 163 | 68 | 226 | sunny, windy |
Pine C | 14 February 2020 | 48.209360, 16.401601 | 161 | 122 | 187 | sunny, windy |
Pine D | 14 February 2020 | 48.222680, 16.391030 | 169 | 62 | 12 | sunny, windy |
Pine E | 14 February 2020 | 48.222680, 16.391090 | 169 | 60 | 11 | sunny, windy |
Pine F | 15 February 2020 | 48.247150, 16.438460 | 163 | 78 | 28 | cloudy, drizzle |
Sample ID | Needles (cm2mL−1) | Branch (cm2mL−1) | Bark (cm2mL−1) |
---|---|---|---|
Pine A | 0.43 | 1.22 | 10.05 |
Pine B | 1.43 | 1.14 | 15.65 |
Pine C | 0.58 | 0.70 | 10.62 |
Pine D | 1.08 | 0.52 | 14.03 |
Pine E | 3.21 | 0.34 | 8.11 |
Pine F | 1.25 | 0.77 | 9.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifried, T.M.; Reyzek, F.; Bieber, P.; Grothe, H. Scots Pines (Pinus sylvestris) as Sources of Biological Ice-Nucleating Macromolecules (INMs). Atmosphere 2023, 14, 266. https://doi.org/10.3390/atmos14020266
Seifried TM, Reyzek F, Bieber P, Grothe H. Scots Pines (Pinus sylvestris) as Sources of Biological Ice-Nucleating Macromolecules (INMs). Atmosphere. 2023; 14(2):266. https://doi.org/10.3390/atmos14020266
Chicago/Turabian StyleSeifried, Teresa M., Florian Reyzek, Paul Bieber, and Hinrich Grothe. 2023. "Scots Pines (Pinus sylvestris) as Sources of Biological Ice-Nucleating Macromolecules (INMs)" Atmosphere 14, no. 2: 266. https://doi.org/10.3390/atmos14020266
APA StyleSeifried, T. M., Reyzek, F., Bieber, P., & Grothe, H. (2023). Scots Pines (Pinus sylvestris) as Sources of Biological Ice-Nucleating Macromolecules (INMs). Atmosphere, 14(2), 266. https://doi.org/10.3390/atmos14020266