Seasonal Variability in Fine Particulate Matter Water Content and Estimated pH over a Coastal Region in the Northeast Arabian Sea
Abstract
:1. Introduction
2. Methodology
2.1. Study Site
2.2. Datasets Used and Their Sources
2.3. ISORROPIA-II and pH Estimation
2.4. Aerosol Ion Balance and Molar Ratio
2.5. PMF and AMBT
3. Results and Discussion
3.1. Seasonal Variability in Ion Balance, Aerosol Acidity and LWC
3.2. FPM pH Response to NO3−, NH4+ and SO42−
3.3. Source Contribution Using PMF and AMBT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khlystov, A.; Stanier, C.O.; Takahama, S.; Pandis, S.N. Water Content of Ambient Aerosol during the Pittsburgh Air Quality Study. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wang, S.; Chang, X.; Cai, S.; Xing, J.; Hao, J. Modeling Analysis of Secondary Inorganic Aerosols over China: Pollution Characteristics, and Meteorological and Dust Impacts. Sci. Rep. 2016, 6, 35992. [Google Scholar] [CrossRef] [PubMed]
- Clement, C. Gas-to-Particle Conversion in the Atmosphere: I. Evidence from Empirical Atmospheric Aerosols. Atmos. Environ. 1999, 33, 475–487. [Google Scholar] [CrossRef]
- Gunthe, S.S.; Liu, P.; Panda, U.; Raj, S.S.; Sharma, A.; Darbyshire, E.; Reyes-Villegas, E.; Allan, J.; Chen, Y.; Wang, X.; et al. Enhanced Aerosol Particle Growth Sustained by High Continental Chlorine Emission in India. Nat. Geosci. 2021, 14, 77–84. [Google Scholar] [CrossRef]
- Chapter 10: Gas-to-Particle Conversion|Engineering360. Available online: https://www.globalspec.com/reference/77570/203279/chapter-10-gas-to-particle-conversion (accessed on 16 November 2022).
- Kulmala, M.; Kerminen, V.-M.; Petäjä, T.; Ding, A.J.; Wang, L. Atmospheric Gas-to-Particle Conversion: Why NPF Events Are Observed in Megacities? Faraday Discuss. 2017, 200, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.N.; Sharma, M. Reconstructing Primary and Secondary Components of PM 2.5 Composition for an Urban Atmosphere. Aerosol Sci. Technol. 2010, 44, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Sudheer, A.K.; Rengarajan, R. Time-Resolved Inorganic Chemical Composition of Fine Aerosol and Associated Precursor Gases over an Urban Environment in Western India: Gas-Aerosol Equilibrium Characteristics. Atmos. Environ. 2015, 109, 217–227. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Xu, J.; Wen, J.; Han, J.; Wang, K.; Shi, G.; Feng, Y.; Ivey, C.E.; Wang, Y.; et al. Aerosols in an Arid Environment: The Role of Aerosol Water Content, Particulate Acidity, Precursors, and Relative Humidity on Secondary Inorganic Aerosols. Sci. Total Environ. 2019, 646, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Tie, X.; Huang, R.-J.; Cao, J.; Zhang, Q.; Cheng, Y.; Su, H.; Chang, D.; Pöschl, U.; Hoffmann, T.; Dusek, U.; et al. Severe Pollution in China Amplified by Atmospheric Moisture. Sci. Rep. 2017, 7, 15760. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Zhang, R.; Yang, W.; Bai, Z.; Ma, Z.; Zhang, W. Heavy Haze Episodes in Beijing during January 2013: Inorganic Ion Chemistry and Source Analysis Using Highly Time-Resolved Measurements from an Urban Site. Sci. Total Environ. 2016, 544, 319–329. [Google Scholar] [CrossRef]
- Kaushik, A.; Kumar, A.; Aswini, M.A.; Panda, P.P.; Shukla, G.; Gupta, N.C. Seasonal Variation in Chemical Composition of Size-Segregated Aerosols Over the Northeastern Arabian Sea. Front. Environ. Sci. 2021, 8, 619174. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of Lockdown Measures during COVID-19 on Air Quality—A Case Study of India. Int. J. Environ. Health Res. 2022, 32, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.L.; Kumar, A.; Yadav, I.C. PM10 and PM2.5 in Indo-Gangetic Plain (IGP) of India: Chemical Characterization, Source Analysis, and Transport Pathways. Urban Clim. 2020, 33, 100663. [Google Scholar] [CrossRef]
- Ghosh, A.; Patel, A.; Rastogi, N.; Sharma, S.K.; Mandal, T.K.; Chatterjee, A. Size-Segregated Aerosols over a High Altitude Himalayan and a Tropical Urban Metropolis in Eastern India: Chemical Characterization, Light Absorption, Role of Meteorology and Long Range Transport. Atmos. Environ. 2021, 254, 118398. [Google Scholar] [CrossRef]
- Acharja, P.; Ali, K.; Ghude, S.D.; Sinha, V.; Sinha, B.; Kulkarni, R.; Gultepe, I.; Rajeevan, M.N. Enhanced Secondary Aerosol Formation Driven by Excess Ammonia during Fog Episodes in Delhi, India. Chemosphere 2022, 289, 133155. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhao, P.; Su, J.; Dong, Q.; Du, X.; Zhang, Y. Aerosol PH and Its Driving Factors in Beijing. Atmos. Chem. Phys. 2019, 19, 7939–7954. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Wei, Y.; Shi, G.; Yu, H.; Zhang, Z.; Song, S.; Wang, W.; Liang, D.; Feng, Y. Roles of RH, Aerosol PH and Sources in Concentrations of Secondary Inorganic Aerosols, during Different Pollution Periods. Atmos. Environ. 2020, 241, 117770. [Google Scholar] [CrossRef]
- Weber, R.J.; Guo, H.; Russell, A.G.; Nenes, A. High Aerosol Acidity despite Declining Atmospheric Sulfate Concentrations over the Past 15 Years. Nat. Geosci. 2016, 9, 282–285. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Collett, J.L., Jr.; Fahey, K.M.; Hennigan, C.J.; Herrmann, H.; et al. The Acidity of Atmospheric Particles and Clouds. Atmos. Chem. Phys. 2020, 20, 4809–4888. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Xu, K.; Yuan, L.; Chen, N.; Cao, M. Fine Particle PH and Its Impact on PM2.5 Control in a Megacity of Central China. Aerosol Air Qual. Res. 2022, 22, 210394. [Google Scholar] [CrossRef]
- Battaglia, M.A., Jr.; Balasus, N.; Ball, K.; Caicedo, V.; Delgado, R.; Carlton, A.G.; Hennigan, C.J. Urban Aerosol Chemistry at a Land–Water Transition Site during Summer—Part 2: Aerosol PH and Liquid Water Content. Atmos. Chem. Phys. 2021, 21, 18271–18281. [Google Scholar] [CrossRef]
- Sharma, M.; Kishore, S.; Tripathi, S.N.; Behera, S.N. Role of Atmospheric Ammonia in the Formation of Inorganic Secondary Particulate Matter: A Study at Kanpur, India. J. Atmos. Chem. 2007, 58, 1–17. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.R.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. Clim. Chang. 2007. Available online: https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch2.html (accessed on 13 November 2022).
- Larssen, T.; Lydersen, E.; Tang, D.; He, Y.; Gao, J.; Liu, H.; Duan, L.; Seip, H.M.; Vogt, R.D.; Mulder, J.; et al. Acid Rain in China. Environ. Sci. Technol. 2006, 40, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squizzato, S.; Masiol, M.; Brunelli, A.; Pistollato, S.; Tarabotti, E.; Rampazzo, G.; Pavoni, B. Factors Determining the Formation of Secondary Inorganic Aerosol: A Case Study in the Po Valley (Italy). Atmos. Chem. Phys. Discuss. 2012, 12, 16377–16406. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wang, Y.; Li, L.; Zhang, G. Acidity and Inorganic Ion Formation in PM2.5 Based on Continuous Online Observations in a South China Megacity. Atmos. Pollut. Res. 2020, 11, 1339–1350. [Google Scholar] [CrossRef]
- Shi, G.; Xu, J.; Peng, X.; Xiao, Z.; Chen, K.; Tian, Y.; Guan, X.; Feng, Y.; Yu, H.; Nenes, A.; et al. PH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol. Environ. Sci. Technol. 2017, 51, 4289–4296. [Google Scholar] [CrossRef]
- Bougiatioti, A.; Nikolaou, P.; Stavroulas, I.; Kouvarakis, G.; Weber, R.; Nenes, A.; Kanakidou, M.; Mihalopoulos, N. Particle Water and PH in the Eastern Mediterranean: Source Variability and Implications for Nutrient Availability. Atmos. Chem. Phys. 2016, 16, 4579–4591. [Google Scholar] [CrossRef] [Green Version]
- Meskhidze, N.; Chameides, W.L.; Nenes, A.; Chen, G. Iron Mobilization in Mineral Dust: Can Anthropogenic SO2 Emissions Affect Ocean Productivity? Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Meskhidze, N.; Chameides, W.L.; Nenes, A. Dust and Pollution: A Recipe for Enhanced Ocean Fertilization? J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Nenes, A.; Krom, M.D.; Mihalopoulos, N.; Van Cappellen, P.; Shi, Z.; Bougiatioti, A.; Zarmpas, P.; Herut, B. Atmospheric Acidification of Mineral Aerosols: A Source of Bioavailable Phosphorus for the Oceans. Atmos. Chem. Phys. 2011, 11, 6265–6272. [Google Scholar] [CrossRef]
- Hennigan, C.J.; Izumi, J.; Sullivan, A.P.; Weber, R.J.; Nenes, A. A Critical Evaluation of Proxy Methods Used to Estimate the Acidity of Atmospheric Particles. Atmos. Chem. Phys. 2015, 15, 2775–2790. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Guo, H.; Zeng, L.; Verma, V.; Nenes, A.; Weber, R.J.; Nenes, A.; Weber, R.J. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environ. Sci. Technol. 2017, 51, 2611–2620. [Google Scholar] [CrossRef]
- Mahowald, N. Aerosol Indirect Effect on Biogeochemical Cycles and Climate. Science 2011, 334, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.R.; Kanakidou, M.; Nenes, A.; Myriokefalitakis, S.; Croot, P.L.; Duce, R.A.; Gao, Y.; Guieu, C.; Ito, A.; Jickells, T.D.; et al. Changing Atmospheric Acidity as a Modulator of Nutrient Deposition and Ocean Biogeochemistry. Sci. Adv. 2021, 7, eabd8800. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, L.; Harner, T.; Shoeib, M.; Lane, D.A.; Murphy, J.G. Improved Characterization of Gas–Particle Partitioning for Per- and Polyfluoroalkyl Substances in the Atmosphere Using Annular Diffusion Denuder Samplers. Environ. Sci. Technol. 2012, 46, 7199–7206. [Google Scholar] [CrossRef]
- Keene, W.C.; Pszenny, A.A.P.; Maben, J.R.; Stevenson, E.; Wall, A. Closure Evaluation of Size-Resolved Aerosol PH in the New England Coastal Atmosphere during Summer. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Rengarajan, R.; Sudheer, A.K.; Sarin, M.M. Wintertime PM2.5 and PM10 Carbonaceous and Inorganic Constituents from Urban Site in Western India. Atmos. Res. 2011, 102, 420–431. [Google Scholar] [CrossRef]
- Sudheer, A.K.; Rengarajan, R.; Sheel, V. Secondary Organic Aerosol over an Urban Environment in a Semi–Arid Region of Western India. Atmos. Pollut. Res. 2015, 6, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Pay, M.T.; Jiménez-Guerrero, P.; Baldasano, J.M. Assessing Sensitivity Regimes of Secondary Inorganic Aerosol Formation in Europe with the CALIOPE-EU Modeling System. Atmos. Environ. 2012, 51, 146–164. [Google Scholar] [CrossRef] [Green Version]
- Norazman, N.H.; Khan, M.F.; Ramanathan, S.; Mustapa Kama Shah, S.; Mohd Jani, S.J.; Joy, K.S.; Islam, K.N.; Jeba, F.; Salam, A.; Yoshida, O.; et al. Influence of Monsoonal Driving Factors on the Secondary Inorganic Aerosol over Ambient Air in Dhaka. ACS Earth Space Chem. 2021, 5, 2517–2533. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Guo, Z.; Lu, P.; Song, F.; Liu, L.; Liu, J.; Rose, N.L.; Wang, F. Positive Matrix Factorization on Source Apportionment for Typical Pollutants in Different Environmental Media: A Review. Environ. Sci. Process. Impacts 2020, 22, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Xu, L.; Bougiatioti, A.; Cerully, K.M.; Capps, S.L.; Hite, J.R.; Carlton, A.G.; Lee, S.-H.; Bergin, M.H.; Ng, N.L.; et al. Fine-Particle Water and PH in the Southeastern United States. Atmos. Chem. Phys. 2015, 15, 5211–5228. [Google Scholar] [CrossRef] [Green Version]
- Beig, G.; Sahu, S.K.; Singh, V.; Tikle, S.; Sobhana, S.B.; Gargeva, P.; Ramakrishna, K.; Rathod, A.; Murthy, B.S. Objective Evaluation of Stubble Emission of North India and Quantifying Its Impact on Air Quality of Delhi. Sci. Total Environ. 2020, 709, 136126. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, J.; Froyd, K.D.; Roberts, J.M.; Veres, P.R.; Hayes, P.L.; Jimenez, J.L.; Nenes, A.; Weber, R.J. Fine Particle PH and Gas–Particle Phase Partitioning of Inorganic Species in Pasadena, California, during the 2010 CalNex Campaign. Atmos. Chem. Phys. 2017, 17, 5703–5719. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Cao, J.J.; Tie, X.X.; Shen, Z.X.; Liu, S.X.; Ding, H.; Han, Y.M.; Wang, G.H.; Ho, K.F.; Qiang, J.; et al. Water-Soluble Ions in Atmospheric Aerosols Measured in Xi’an, China: Seasonal Variations and Sources. Atmos. Res. 2011, 102, 110–119. [Google Scholar] [CrossRef]
- Kerminen, V.-M.; Hillamo, R.; Teinilä, K.; Pakkanen, T.; Allegrini, I.; Sparapani, R. Ion Balances of Size-Resolved Tropospheric Aerosol Samples: Implications for the Acidity and Atmospheric Processing of Aerosols. Atmos. Environ. 2001, 35, 5255–5265. [Google Scholar] [CrossRef]
- Shi, G.; Xu, J.; Shi, X.; Liu, B.; Bi, X.; Xiao, Z.; Chen, K.; Wen, J.; Dong, S.; Tian, Y.; et al. Aerosol PH Dynamics During Haze Periods in an Urban Environment in China: Use of Detailed, Hourly, Speciated Observations to Study the Role of Ammonia Availability and Secondary Aerosol Formation and Urban Environment. J. Geophys. Res. Atmos. 2019, 124, 9730–9742. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric Aerosol over Alaska: 2. Elemental Composition and Sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Pekey, H.; Pekey, B.; Arslanbaş, D.; Bozkurt, Z.B.; Doğan, G.; Tuncel, G. Source Apportionment of Personal Exposure to Fine Particulate Matter and Volatile Organic Compounds Using Positive Matrix Factorization. Water Air Soil Pollut. 2012, 224, 1403. [Google Scholar] [CrossRef]
- Kim, E.; Larson, T.V.; Hopke, P.K.; Slaughter, C.; Sheppard, L.E.; Claiborn, C. Source Identification of PM2.5 in an Arid Northwest U.S. City by Positive Matrix Factorization. Atmos. Res. 2003, 66, 291–305. [Google Scholar] [CrossRef]
- Song, S.; Gao, M.; Xu, W.; Shao, J.; Shi, G.; Wang, S.; Wang, Y.; Sun, Y.; McElroy, M.B. Fine-Particle PH for Beijing Winter Haze as Inferred from Different Thermodynamic Equilibrium Models. Atmos. Chem. Phys. 2018, 18, 7423–7438. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; Van Reken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R.C. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006. Atmos. Chem. Phys. 2009, 9, 2141–2156. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the Atmosphere: A Review on Emission Sources, Atmospheric Chemistry and Deposition on Terrestrial Bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Liu, M.; Song, Y.; Zhou, T.; Xu, Z.; Yan, C.; Zheng, M.; Wu, Z.; Hu, M.; Wu, Y.; Zhu, T. Fine Particle PH during Severe Haze Episodes in Northern China. Geophys. Res. Lett. 2017, 44, 5213–5221. [Google Scholar] [CrossRef]
- He, K.; Zhao, Q.; Ma, Y.; Duan, F.; Yang, F.; Shi, Z.; Chen, G. Spatial and Seasonal Variability of PM2.5 Acidity at Two Chinese Megacities: Insights into the Formation of Secondary Inorganic Aerosols. Atmos. Chem. Phys. 2012, 12, 1377–1395. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Zhuang, G.; Wang, Q.; Fu, J.S.; Lin, Y.; Liu, T.; Han, L.; Deng, C. Extreme Haze Pollution in Beijing during January 2013: Chemical Characteristics, Formation Mechanism and Role of Fog Processing. Atmos. Chem. Phys. Discuss. 2014, 14, 7517–7556. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Tie, X.; Dabberdt, W.F.; Jie, T.; Zhao, Z.; An, Z.; Shen, Z.; Feng, Y. On the Potential High Acid Deposition in Northeastern China. J. Geophys. Res. Atmos. 2013, 118, 4834–4846. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Isolating Nitrated and Aromatic Aerosols and Nitrated Aromatic Gases as Sources of Ultraviolet Light Absorption. J. Geophys. Res. Atmos. 1999, 104, 3527–3542. [Google Scholar] [CrossRef]
- Trebs, I.; Metzger, S.; Meixner, F.X.; Helas, G.; Hoffer, A.; Rudich, Y.; Falkovich, A.H.; Moura, M.A.L.; da Silva, R.S., Jr.; Artaxo, P.; et al. The NH4+-NO3−-Cl−-SO42−-H2O Aerosol System and Its Gas Phase Precursors at a Pasture Site in the Amazon Basin: How Relevant Are Mineral Cations and Soluble Organic Acids? J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Ziemba, L.D.; Fischer, E.; Griffin, R.J.; Talbot, R.W. Aerosol Acidity in Rural New England: Temporal Trends and Source Region Analysis. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Moya, M.; Castro, T.; Zepeda, M.; Baez, A. Characterization of Size-Differentiated Inorganic Composition of Aerosols in Mexico City. Atmos. Environ. 2003, 37, 3581–3591. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Z.; Xiao, H.; Xie, Y.; Liang, Y.; Xiao, H. How Aerosol PH Responds to Nitrate to Sulfate Ratio of Fine-Mode Particulate. Environ. Sci. Pollut. Res. 2020, 27, 35031–35039. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.; Zhang, L. Long-Term Air Concentrations, Wet Deposition, and Scavenging Ratios of Inorganic Ions, HNO3, and SO2 and Assessment of Aerosol and Precipitation Acidity at Canadian Rural Locations. Atmos. Chem. Phys. 2017, 17, 4711–4730. [Google Scholar] [CrossRef] [Green Version]
- Lawal, A.S.; Guan, X.; Liu, C.; Henneman, L.R.F.; Vasilakos, P.; Bhogineni, V.; Weber, R.J.; Nenes, A.; Russell, A.G. Linked Response of Aerosol Acidity and Ammonia to SO2 and NOx Emissions Reductions in the United States. Environ. Sci. Technol. 2018, 52, 9861–9873. [Google Scholar] [CrossRef]
- Murphy, J.G.; Gregoire, P.K.; Tevlin, A.G.; Wentworth, G.R.; Ellis, R.A.; Markovic, M.Z.; VandenBoer, T.C. Observational Constraints on Particle Acidity Using Measurements and Modelling of Particles and Gases. Faraday Discuss. 2017, 200, 379–395. [Google Scholar] [CrossRef]
- Craig, R.L.; Nandy, L.; Axson, J.L.; Dutcher, C.S.; Ault, A.P. Spectroscopic Determination of Aerosol pH from Acid–Base Equilibria in Inorganic, Organic, and Mixed Systems. J. Phys. Chem. A 2017, 121, 5690–5699. [Google Scholar] [CrossRef]
- Pandis, S.N.; Seinfeld, J.H. Sensitivity Analysis of a Chemical Mechanism for Aqueous-Phase Atmospheric Chemistry. J. Geophys. Res. Atmos. 1989, 94, 1105–1126. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 Ionic Species in Four Major Cities of China: Nitrate Formation in an Ammonia-Deficient Atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Pan, Y.; Wang, Y. Ion Balance and Acidity of Size-Segregated Particles during Haze Episodes in Urban Beijing. Atmos. Res. 2018, 201, 159–167. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Du, W.; Zhang, Q.; Wang, Q.Q.; Fu, P.Q.; Pan, X.L.; Li, J.; Jayne, J.; Worsnop, D.R. Long-Term Real-Time Measurements of Aerosol Particle Composition in Beijing, China: Seasonal Variations, Meteorological Effects, and Source Analysis. Atmos. Chem. Phys. 2015, 15, 10149–10165. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.D. Dimethyl Sulfide Production and Marine Phytoplankton: The Importance of Species Composition and Cell Size. Biol. Oceanogr. 1989, 6, 375–382. [Google Scholar] [CrossRef]
- Adachi, K.; Buseck, P.R. Changes in Shape and Composition of Sea-Salt Particles upon Aging in an Urban Atmosphere. Atmos. Environ. 2015, 100, 1–9. [Google Scholar] [CrossRef]
- Kotchenruther, R.A. The Effects of Marine Vessel Fuel Sulfur Regulations on Ambient PM2.5 at Coastal and near Coastal Monitoring Sites in the U.S. Atmos. Environ. 2017, 151, 52–61. [Google Scholar] [CrossRef]
- Corral, A.F.; Dadashazar, H.; Stahl, C.; Edwards, E.-L.; Zuidema, P.; Sorooshian, A. Source Apportionment of Aerosol at a Coastal Site and Relationships with Precipitation Chemistry: A Case Study over the Southeast United States. Atmosphere 2020, 11, 1212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, G.; Sudheer, A.K.; Gunthe, S.S.; Beig, G.; Kumar, A. Seasonal Variability in Fine Particulate Matter Water Content and Estimated pH over a Coastal Region in the Northeast Arabian Sea. Atmosphere 2023, 14, 259. https://doi.org/10.3390/atmos14020259
Shukla G, Sudheer AK, Gunthe SS, Beig G, Kumar A. Seasonal Variability in Fine Particulate Matter Water Content and Estimated pH over a Coastal Region in the Northeast Arabian Sea. Atmosphere. 2023; 14(2):259. https://doi.org/10.3390/atmos14020259
Chicago/Turabian StyleShukla, Garima, A. K. Sudheer, Sachin S. Gunthe, Gufran Beig, and Ashwini Kumar. 2023. "Seasonal Variability in Fine Particulate Matter Water Content and Estimated pH over a Coastal Region in the Northeast Arabian Sea" Atmosphere 14, no. 2: 259. https://doi.org/10.3390/atmos14020259
APA StyleShukla, G., Sudheer, A. K., Gunthe, S. S., Beig, G., & Kumar, A. (2023). Seasonal Variability in Fine Particulate Matter Water Content and Estimated pH over a Coastal Region in the Northeast Arabian Sea. Atmosphere, 14(2), 259. https://doi.org/10.3390/atmos14020259