Performance of the PERSIANN Family of Products over the Mekong River Basin and Their Application for the Analysis of Trends in Extreme Precipitation Indices
Abstract
:1. Introduction
- (a)
- to perform a daily evaluation of the PERSIANN family of products—specifically, PDIR-Now, PERSIANN-CCS, and PERSIANN-CDR—at a 0.1 by 0.1 spatial resolution;
- (b)
- to perform a trend analysis of extreme precipitation indices separately over the UMRB and LMRB to exemplify the appropriate use of climate record data.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
3. Results
3.1. Evaluation
3.2. Trends in Extreme Precipitation Indices
4. Discussion and Conclusions
- -
- Decreasing trends over the UMRB in the mean of the precipitation above the 95th and 99th percentiles (R95pTOT and R99pTOT).
- -
- A decreasing trend in R95pTOT over the southern part of the UMRB.
- -
- A decrease in R99pTOT over the northern part of the UMRB during the study period.
- -
- An increasing trend in the mean of the length of wet spells (CWD) over the LMRB, as well as in several areas of the UMRB, during the study period.
- -
- An increasing trend in yearly precipitation in areas of the UMRB and LMRB but not in the yearly mean.
- -
- An increasing trend in the intensity of rainfall (SDII) over the southern part of the LMRB and a decreasing trend over the north of the UMRB.
- -
- Positive trends in the number of days with precipitation greater than or equal to 10 mm, as well as the amount of precipitation on these days (R10mm and R10mmTOT) in areas of the LMRB.
- -
- An increasing length of dry spells (CDD) over the southern part of the UMRB and increasing length of wet spells (CWD) over the northern part of the UMRB.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APHRODITE | Asian Precipitation—Highly Resolved Observational Data Integration |
Towards Evaluation | |
CC | Correlation coefficient |
CDD | Consecutive dry days |
CHRS | Center for Hydrometeorology and Remote Sensing |
CMDSSS | China Meteorological Data Sharing Service System |
CSI | Critical success index |
CWD | Consecutive wet days |
ERA5 | European Centre for Medium-Range Weather Forecast Reanalysis 5 |
FAR | False alarm ratio |
IMERG | Integrated Multi-satellitE Retrievals for Global Precipitation Measurement |
LMRB | Lower Mekong Basin and Delta |
MRB | Mekong River Basin and Delta |
NOAA | National Oceanic and Atmospheric Administration |
PERSIANN | Precipitation Estimation from Remotely Sensed Information using Artificial |
Neural Networks | |
PDIR-Now | PERSIANN Dynamic Infrared in near-real-time |
PERSIANN-CCS | PERSIANN—Cloud Classification System |
POD | Probability of detection |
RMSE | Root-mean-squared error |
SDII | Simple daily intensity index |
TMPA | Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis |
UMRB | Upper Mekong Basin |
References
- AghaKouchak, A.; Nakhjiri, N. A near Real-Time Satellite-Based Global Drought Climate Data Record. Environ. Res. Lett. 2012, 7, 044037. [Google Scholar] [CrossRef]
- Sarojini, B.B.; Stott, P.A.; Black, E. Detection and Attribution of Human Influence on Regional Precipitation. Nat. Clim. Chang. 2016, 6, 669–675. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S.; et al. Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
- McRoberts, D.B.; Nielsen-Gammon, J.W. Detecting Beam Blockage in Radar-Based Precipitation Estimates. J. Atmos. Ocean. Technol. 2017, 34, 1407–1422. [Google Scholar] [CrossRef]
- Faridzad, M.; Yang, T.; Hsu, K.; Sorooshian, S.; Xiao, C. Rainfall Frequency Analysis for Ungauged Regions Using Remotely Sensed Precipitation Information. J. Hydrol. 2018, 563, 123–142. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Zhao, T.; Jiang, L.; Shi, J. Evaluation and Comparison of Daily Rainfall From Latest GPM and TRMM Products Over the Mekong River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2540–2549. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG Products for Extreme Precipitation Analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Nguyen, L.B.; Quang Do, V. Accuracy of Integrated Multi-SatelliE Retrievalsfor GPM Satellite Rainfall Productover North Vietnam. Pol. J. Environ. Stud. 2021, 30, 5657–5667. [Google Scholar] [CrossRef]
- Ang, R.; Kinouchi, T.; Zhao, W. Evaluation of Daily Gridded Meteorological Datasets for Hydrological Modeling in Data-Sparse Basins of the Largest Lake in Southeast Asia. J. Hydrol. Reg. Stud. 2022, 42, 101135. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A.; Peng, J. A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China. Remote Sens. 2021, 13, 1208. [Google Scholar] [CrossRef]
- Liu, L.; Bai, P.; Liu, C.; Tian, W.; Liang, K. Changes in Extreme Precipitation in the Mekong Basin. Adv. Meteorol. 2020, 2020, 8874869. [Google Scholar] [CrossRef]
- Irannezhad, M.; Liu, J.; Chen, D. Extreme precipitation variability across the Lancang-Mekong River Basin during 1952–2015 in relation to teleconnections and summer monsoons. Int. J. Climatol. 2021, 42, 2614–2638. [Google Scholar] [CrossRef]
- Wu, F.; Wang, X.; Cai, Y.; Li, C. Spatiotemporal Analysis of Precipitation Trends under Climate Change in the Upper Reach of Mekong River Basin. Quat. Int. 2016, 392, 137–146. [Google Scholar] [CrossRef]
- Li, Y.-G.; He, D.; Hu, J.-M.; Cao, J. Variability of Extreme Precipitation over Yunnan Province, China 1960–2012: Variability of Extreme Precipitation over Yunnan Province. Int. J. Climatol. 2015, 35, 245–258. [Google Scholar] [CrossRef]
- Lee, S.K.; Dang, T.A. Extreme Rainfall Trends over the Mekong Delta under the Impacts of Climate Change. IJCCSM 2020, 12, 639–652. [Google Scholar] [CrossRef]
- Economy of the Mekong River. Available online: https://www.britannica.com/place/Mekong-River/Economy (accessed on 10 December 2022).
- Climate. Available online: http://www.mrcmekong.org/about/mekong-basin/climate/ (accessed on 10 December 2022).
- The Role of the Mekong River in the Economy. Available online: https://d2ouvy59p0dg6k.cloudfront.net/downloads/key_findings_mekong_river_in_the_economy.pdf (accessed on 16 August 2022).
- Mekong River in the Economy. Available online: https://greatermekong.panda.org/our_solutions/mekongintheeconomy/ (accessed on 10 December 2022).
- Chinvanno, S.; Souvannalath, S.; Kerdsuk, V.; Thuan, N.T.H. Climate Risks and Rice Farming in the Lower Mekong River Countries. AIACC Work. Pap. 2006, 42, 1–40. [Google Scholar]
- Nguyen, P.; Ombadi, M.; Gorooh, V.A.; Shearer, E.J.; Sadeghi, M.; Sorooshian, S.; Hsu, K.; Bolvin, D.; Ralph, M.F. PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A Near-Real-Time, Quasi-Global Satellite Precipitation Dataset. J. Hydrometeorol. 2020, 21, 2893–2906. [Google Scholar] [CrossRef]
- Hong, Y.; Gochis, D.; Cheng, J.; Hsu, K.; Sorooshian, S. Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Braithwaite, D.; Updegraff, G.; Hsu, K.; et al. The CHRS Data Portal, an Easily Accessible Public Repository for PERSIANN Global Satellite Precipitation Data. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, Q.; Duan, Z.; Zhang, J.; Mo, K.; Li, Z.; Tang, G. Multiscale Comparative Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products from 2015 to 2017 over a Climate Transition Area of China. Remote Sens. 2018, 10, 944. [Google Scholar] [CrossRef]
- Xu, F.; Guo, B.; Ye, B.; Ye, Q.; Chen, H.; Ju, X.; Guo, J.; Wang, Z. Systematical Evaluation of GPM IMERG and TRMM 3B42V7 Precipitation Products in the Huang-Huai-Hai Plain, China. Remote Sens. 2019, 11, 697. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of Hydrological Utility of IMERG Final Run V05 and TMPA 3B42V7 Satellite Precipitation Products in the Yellow River Source Region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Qin, Z.; Zheng, Y.; Guo, J. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau. J. Meteorol. Res. 2018, 32, 324–336. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated multi-satellite retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). Adv. Glob. Chang. Res. 2020, 1, 343–353. [Google Scholar] [CrossRef]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeorol. 2019, 20, 2273–2289. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing, Proceedings of Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. [Google Scholar] [CrossRef]
- Seastrom, M.; Kaufman, S.; Lee, R. Appendix B: Evaluating the Impact of Imputations for Item Nonresponse; National Center for Education Statistics: Washington, DC, USA, 2002. Available online: https://nces.ed.gov/statprog/2002/appendixb.asp (accessed on 7 December 2023).
- AghaKouchak, A.; Mehran, A. Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resour. Res. 2013, 49, 7144–7149. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Mann-Kendall Test for Monotonic Trend. Available online: https://vsp.pnnl.gov/help/vsample/design_trend_mann_kendall.htm (accessed on 12 August 2022).
- Gorooh, V.A.; Shearer, E.J.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Cannon, F.; Ralph, M. Performance of New Near-Real-Time PERSIANN Product (PDIR-Now) for Atmospheric River Events over the Russian River Basin, California. J. Hydrometeorol. 2022, 23, 1899–1911. [Google Scholar] [CrossRef]
Extreme Index | Definition |
---|---|
SDII (mm/day) | Sum of the precipitation amounts on wet days (precipitation ≥ 1 mm) over the number of wet days. |
R10mm (days) | Annual count of days on which precipitation was ≥10 mm. |
R10mmTOT (mm) | Annual amount of precipitation on days in which precipitation was ≥10 mm. |
CDD (days) | Maximum number of consecutive days on which precipitation was <1 mm. |
CWD (days) | Maximum number of consecutive days on which precipitation was ≥1 mm. |
R95pTOT (mm) | Annual total precipitation when daily precipitation on a wet day was above the 95th percentile. |
R99pTOT (mm) | Annual total precipitation when daily precipitation on a wet day was above the 99th percentile. |
PRCPTOT (mm) | Annual total precipitation on wet days. |
SPP | CC | RMSE (mm) | Bias | POD | FAR | CSI |
---|---|---|---|---|---|---|
PDIR-Now | 0.62 | 8.96 | −0.19 | 0.89 | 0.18 | 0.74 |
PERSIANN-CCS | 0.58 | 9.72 | 0.10 | 0.79 | 0.12 | 0.70 |
PERSIANN-CDR | 0.66 | 7.85 | 0.12 | 0.91 | 0.22 | 0.72 |
Extreme Index | Upper Mekong Basin | Lower Mekong Basin |
---|---|---|
SDII (mm/day) | T = 0 | T = 0 |
p-value = 0.280 | p-value = 0.706 | |
R10mm (days) | T = 0 | T = 0 |
p-value = 0.209 | p-value = 0.083 | |
R10mmTOT (mm) | T = 0 | T = 0 |
p-value = 0.615 | p-value = 0.125 | |
CDD (days) | T = 0 | T = 0 |
p-value = 0.352 | p-value = 0.513 | |
CWD (days) | T = 0 | T = 1 |
p-value = 0.070 | p-value = 0.017 | |
R95pTOT (mm) | T = −1 | T = 0 |
p-value = 0.021 | p-value = 0.481 | |
R99pTOT (mm) | T = −1 | T = 0 |
p-value = 0.017 | p-value = 0.436 | |
PRCPTOT (mm) | T = 0 | T = 0 |
p-value = 0.421 | p-value = 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez Arellano, C.; Dao, V.; Afzali Gorooh, V.; Alharbi, R.S.; Nguyen, P. Performance of the PERSIANN Family of Products over the Mekong River Basin and Their Application for the Analysis of Trends in Extreme Precipitation Indices. Atmosphere 2023, 14, 1832. https://doi.org/10.3390/atmos14121832
Jimenez Arellano C, Dao V, Afzali Gorooh V, Alharbi RS, Nguyen P. Performance of the PERSIANN Family of Products over the Mekong River Basin and Their Application for the Analysis of Trends in Extreme Precipitation Indices. Atmosphere. 2023; 14(12):1832. https://doi.org/10.3390/atmos14121832
Chicago/Turabian StyleJimenez Arellano, Claudia, Vu Dao, Vesta Afzali Gorooh, Raied Saad Alharbi, and Phu Nguyen. 2023. "Performance of the PERSIANN Family of Products over the Mekong River Basin and Their Application for the Analysis of Trends in Extreme Precipitation Indices" Atmosphere 14, no. 12: 1832. https://doi.org/10.3390/atmos14121832
APA StyleJimenez Arellano, C., Dao, V., Afzali Gorooh, V., Alharbi, R. S., & Nguyen, P. (2023). Performance of the PERSIANN Family of Products over the Mekong River Basin and Their Application for the Analysis of Trends in Extreme Precipitation Indices. Atmosphere, 14(12), 1832. https://doi.org/10.3390/atmos14121832