Cloud Characteristics and Their Effects on Solar Irradiance According to the ICON Model, CLOUDNET and BSRN Observations
Abstract
:1. Introduction
2. Model and Methods
2.1. ICON Model Configuration
2.2. Experimental Data
2.3. Experiment Design
3. Results
3.1. Liquid Water Content
- (1)
- Insufficient concentration of cloud condensation nuclei for droplet nucleation and liquid water content growth in conditions with CCNs = 250 cm−3;
- (2)
- Too-intensive formation of ice crystals, which can lead to a decrease in the excess specific humidity required for the cloud droplet nucleation;
- (3)
- Too-intensive processes of autoconversion and accretion, leading to the transition of cloud water mass into precipitation;
- (4)
- The problems with the saturation adjustment scheme, influencing the deficiency of specific humidity in activating condensation nuclei.
3.2. Cloud Optical Thickness and Shortwave Irradiance at Ground Level
4. Discussion
5. Conclusions
- -
- A comparison of ICON and CLOUDNET data showed an underestimation of simulated grid-scale liquid water content. Taking into account the subgrid-scale component of clouds, the average liquid water path is still underestimated by 59 ± 16 g/m2.
- -
- An analysis of the case study of 19 September 2021 showed that the CCN growth from 250 cm−3 to 1700 cm−3 led to an increase in cloud droplet number concentration by an average of 94 ± 20 cm−3 (65%), providing an increase in the grid-scale liquid water path and cloud optical thickness by 118 ± 2 g/m2 (40%) and by 1 (8%), respectively. This led to a decrease in solar irradiance at ground level by an average of 9 W/m2 (12%) in overcast conditions. The obtained CCN effects contribute to reducing errors in the liquid water path prediction and solar irradiance at ground level.
- -
- We obtained a sufficient accuracy of cloud optical thickness forecasting using the SOCRATES parametrization of the ecRad scheme [37] in cases when the liquid water path was predicted successfully.
- -
- The solar irradiance at ground level is on average overestimated compared to the BSRN observations. We showed that global irradiance values are more sensitive to the prediction of R (ratio of direct to global solar irradiance) than to the liquid water path and cloud fraction forecast. A successful R prediction significantly improves the forecast of solar irradiance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauder, M.; Foken, T.; Cuxart, J. Surface-Energy-Balance Closure over Land A Review. Bound.-Layer Meteorol. 2020, 177, 395–426. [Google Scholar] [CrossRef]
- Marshak, A.; Davis, A.B. 3D Radiative Transfer in Cloudy Atmospheres; Springer: Berlin/Heidelberg, Germany, 2005; 686p. [Google Scholar]
- Khain, A.P.; Pinsky, M. Physical Processes in Clouds and Cloud Modeling; Cambridge University Press: Cambridge, UK, 2005; 626p. [Google Scholar] [CrossRef]
- Haiden, T.; Forbes, R.M.; Ahlgrimm, M.; Bozzo, A. The skill of ECMWF cloudiness forecast. ECMWF Newsl. 2015, 143, 14–19. Available online: https://www.researchgate.net/profile/Thomas-Haiden/publication/292989145_The_skill_of_ECMWF_cloudiness_forecasts/links/56b497e608ae922e6c020100/The-skill-of-ECMWF-cloudiness-forecasts.pdf (accessed on 14 October 2023).
- Tuononen, M.; O’Connor, E.J.; Sinclair, V.A. Evaluating solar radiation forecast uncertainty. Atmos. Chem. Phys. 2019, 19, 1985–2000. [Google Scholar] [CrossRef]
- Sotiropoulou, G.; Sedlar, J.; Forbes, R.; Tjernström, M. Summer Arctic clouds in the ECMWF forecast model: An evaluation of cloud parametrization schemes. Q. J. R. Meteorol. Soc. 2016, 142, 387–400. [Google Scholar] [CrossRef]
- Tuccella, P.; Curci, G.; Grell, G.A.; Visconti, G.; Crumeyrolle, S.; Schwarzenboeck, A.; Mensah, A.A. A new chemistry option in WRF-Chem v. 3.4 for the simulation of direct and indirect aerosol effects VBS: Evaluation against IMPACT-EUCAARI data. Geosci. Model Dev. 2015, 8, 2749–2776. [Google Scholar] [CrossRef]
- Dipu, S.; Quaas, J.; Wolke, R.; Stoll, J.; Mühlbauer, A.; Sourdeval, O.; Salzmann, M.; Heinold, B.; Tegen, I. Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data. Geosci. Model Dev. 2017, 10, 2231–2246. [Google Scholar] [CrossRef]
- Baldauf, M.; Seifert, A.; Foerstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Weather Rev. 2011, 139, 3887–3905. [Google Scholar] [CrossRef]
- Xie, X.; Liu, X. Aerosol-cloud-precipitation interactions in WRF model: Sensitivity to autoconversion parameterization. J. Meteorol. Res. 2015, 29, 72–81. [Google Scholar] [CrossRef]
- Muskatel, H.B.; Blahak, U.; Khain, P.; Levi, Y.; Fu, Q. Parametrizations of liquid and ice clouds’ optical properties in operational numerical weather prediction models. Atmosphere 2021, 12, 89. [Google Scholar] [CrossRef]
- Tao, W.-K.; Simpson, J.; McCumber, M. An Ice-Water Saturation Adjustment. Mon. Weather Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef]
- Khain, A.; Beheng, K.D.; Heymsfield, A.; Korolev, A.; Krichak, S.O.; Levin, Z.; Pinsky, M.; Phillips, V.; Prabhakaran, T.; Teller, A.; et al. Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parametrization. Rev. Geophys. 2015, 53, 247–322. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.; Zhang, R.; Leung, L.R.; Franklin, C. Improving bulk microphysics parametrizations in simulations of aerosol effects. J. Geophys. Res. Atmos. 2013, 118, 5361–5379. [Google Scholar] [CrossRef]
- Haiden, T.; Trentmann, J. Verification of cloudiness and radiation forecasts in the greater Alpine region. Meteorol. Z. 2016, 25, 3–15. [Google Scholar] [CrossRef]
- Sundqvist, H.; Berge, E.; Kristjansson, J.E. Condensation and Cloud Parametrization Studies with a Mesoscale Numerical Weather Prediction Model. Mon. Weather Rev. 1989, 117, 1641–1657. [Google Scholar] [CrossRef]
- Tiedke, M. Representation of Clouds in Large-Scale Models. Mon. Weather Rev. 1993, 121, 3040–3061. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Q.; Zhao, C.; Shen, X.; Wang, Y.; Jiang, J.H.; Li, Z.; Yung, Y. Application and Evaluation of an Explicit Prognostic Cloud-Cover Scheme in GRAPES Global Forecast System. J. Adv. Model. Earth Syst. 2018, 10, 652–667. [Google Scholar] [CrossRef]
- Crueger, T.; Giorgetta, M.A.; Brokopf, R.; Esch, M.; Fiedler, S.; Hohenegger, C.; Kornblueh, L.; Mauritsen, T.; Nam, C.; Naumann, A.K.; et al. ICON-A, the atmosphere component of the ICON Earth system model: II. Model evaluation. J. Adv. Model. Earth Syst. 2018, 10, 1638–1662. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Brokopf, R.; Crueger, T.; Esch, M.; Fiedler, S.; Helmert, J.; Hohenegger, C.; Kornblueh, L.; Köhler, M.; Manzini, E.; et al. ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. J. Adv. Model. Earth Syst. 2018, 10, 1613–1637. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Lorenz, S.J.; Schmidt, H.; Brovkin, V.; Brueggemann, N.; Chegini, F.; Crüger, F.; De-Vrese, P.; Gayler, V.; Giorgetta, M.A.; et al. The ICON Earth System Model Version 1.0. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002813. [Google Scholar] [CrossRef]
- Grundner, A.; Beucler, T.; Gentine, P.; Iglesias-Suarez, F.; Giorgetta, M.A.; Eyring, V. Deep learning based cloud cover parameterization for ICON. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002959. [Google Scholar] [CrossRef]
- Bresson, H.; Rinke, A.; Mech, M.; Reinert, D.; Schemann, V.; Ebell, K.; Maturilli, M.; Viceto, C.; Gorodetskaya, I.; Crewell, S. Case study of a moisture intrusion over the Arctic with the ICON model: Resolution dependence of its representation. Atmos. Chem. Phys. 2022, 22, 173–196. [Google Scholar] [CrossRef]
- Heize, R.; Dipankar, A.; Henken, C.C.; Moseley, C.; Sourdeval, O.; Troemel, S.; Xie, X.; Adamidis, P.; Ament, F.; Baars, H.; et al. Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Q. J. R. Meteorol. Soc. 2017, 143, 69–100. [Google Scholar] [CrossRef]
- De Lucia, C.; Bucchignani, E.; Mastellone, A.; Adinolfi, M.; Montesarchio, M.; Cinquegrana, D.; Mercogliano, P.; Schiano, P. A sensitivity study on high resolution NWP ICON-LAM model over Italy. Atmosphere 2022, 13, 540. [Google Scholar] [CrossRef]
- Ori, D.; Schemann, V.; Karrer, M.; Neto, J.D.; Terzi, L.; Seifert, A.; Kneifel, S. Evaluation of ice particle growth in ICON using statistics of multi-frequency Doppler cloud radar observations. Q. J. R. Meteorol. Soc. 2020, 146, 3830–3849. [Google Scholar] [CrossRef]
- Zängl, G.; Reinert, D.; Ripodas, P.; Baldauf, M. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 2015, 141, 563–579. [Google Scholar] [CrossRef]
- Rivin, G.S.; Rozinkina, I.A.; Astakhova, E.D.; Blinov, D.V.; Bundel, A.Y.; Kirsanov, A.A.; Shatunova, M.V.; Chubarova, N.Y.; Alferov, D.Y.; Varentsov, M.I.; et al. COSMO-Ru high-resolution short-range numerical weather prediction system: Its development and applications. Hydrometeorol. Res. Forecast. 2019, 374, 37–53. Available online: https://method.meteorf.ru/publ/tr/tr374/03.pdf (accessed on 14 October 2023). (In Russian). [CrossRef]
- Seifert, A.; Beheng, K.D. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys. 2006, 92, 45–66. [Google Scholar] [CrossRef]
- Segal, Y.; Khain, A. Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res. Atmos. 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Seifert, A. On the parametrization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci. 2008, 65, 3608–3619. [Google Scholar] [CrossRef]
- Kärcher, B.; Hendricks, J.; Lohmann, U. Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res. Atmos. 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Phillips, V.T.J.; DeMott, P.J.; Andronache, C. An Empirical Parametrization of Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol. J. Atmos. Sci. 2008, 65, 2757–2783. [Google Scholar] [CrossRef]
- Doms, G.; Foerstner, J.; Heise, E.; Herzog, H.-J.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schulz, J.-P.; et al. A Description of the Nonhydrostatic Regional COSMO-Model. Part II: Physical Parametrizations (COSMO 6.0); Deutscher Wetterdienst: Offenbach, Germany, 2021; 171p. [Google Scholar] [CrossRef]
- Hogan, R.J.; Bozzo, A. ECRAD: A New Radiation Scheme for the IFS; ECMWF Technical Memoranda; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2016; Volume 787, Available online: https://www.ecmwf.int/sites/default/files/elibrary/2016/16901-ecrad-new-radiation-scheme-ifs.pdf (accessed on 14 October 2023).
- Pincus, R.; Barker, H.W.; Morcrette, J.J. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. Atmos. 2003, 108, 1–5. [Google Scholar] [CrossRef]
- Edwards, J.M.; Slingo, A. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. Meteorol. Soc. 1996, 122, 689–719. [Google Scholar] [CrossRef]
- Fu, Q. An accurate parametrization of the solar radiative properties of cirrus clouds for climate models. J. Clim. 1996, 9, 2058–2082. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, P.; Sun, W.B. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Clim. 1998, 11, 2223–2237. [Google Scholar] [CrossRef]
- Hogan, R.J.; Illingworth, A.J. Deriving cloud overlap statistics from radar. J. Atmos. Sci. 2000, 126, 2903–2909. [Google Scholar] [CrossRef]
- CLU. Cloud Profiling Products: Classification, Liquid Water Content, Categorize; Cloud Profiling Measurements: Microwave radiometer; to 31 October 2021; from Jülich, Lindenberg, Munich. Generated by the Cloud Profiling Unit of the ACTRIS Data Centre. 2023. Available online: https://cloudnet.fmi.fi/collection/4a9e1538-ddb7-4b2d-8fe0-a40b72a19f67 (accessed on 25 November 2023).
- Illingworth, A.J.; Hogan, R.J.; O’Connor, E.J.; Bouniol, D.; Brooks, M.E.; Delanoea, J.; Donovan, D.P.; Eastment, J.D.; Gaussiat, N.; Goddard, J.W.F.; et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Am. Meteorol. Soc. 2007, 88, 883–898. [Google Scholar] [CrossRef]
- Görsdorf, U.; Lehmann, V.; Bauer-Pfundstein, M.; Peters, G.; Vavriv, D.; Vinogradov, V.; Volkov, V. A 35-GHz Polarimetric Doppler Radar for Long-Term Observations of Cloud Parameters—Description of System and Data Processing. J. Atmos. Ocean. Technol. 2015, 32, 675–690. [Google Scholar] [CrossRef]
- Löhnert, U.; Scheween, J.H.; Acquistapace, C.; Ebell, K.; Maahn, M.; Barrera-Verdejo, M.; Hirsikko, A.; Bohn, B.; Knaps, A.; O’Connor, E.; et al. JOYCE: Jülich observatory for cloud evolution. Bull. Am. Meteorol. Soc. 2015, 96, 1157–1174. [Google Scholar] [CrossRef]
- Gaussiat, N.; Hogan, R.J.; Illingworth, A.J. Accurate liquid water path retrieval from low-cost microwave radiometers using additional information from a lidar ceilometer and operational forecast models. J. Atmos. Ocean. Technol. 2007, 24, 1562–1575. [Google Scholar] [CrossRef]
- Roebeling, R.A.; Deneke, H.M.; Feijt, A.J. Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J. Appl. Meteorol. Climatol. 2007, 47, 206–222. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens 2016, 55, 502–525. [Google Scholar] [CrossRef] [PubMed]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- McArthur, L.J.B. World Climate Research Programme-Baseline Surface Radiation Network (BSRN)—Operations Manual Version 2.1. WMO/TD-No. 1274. 2005. Available online: https://epic.awi.de/id/eprint/45991/1/McArthur.pdf (accessed on 14 October 2023).
- Gultepe, I.; Isaac, G.A. Liquid water content and temperature relationship from aircraft observations and its applicability to GCMs. J. Clim. 1997, 11, 446–452. [Google Scholar] [CrossRef]
- Löhnert, U.; Crewell, S.; Simmer, C.; Macke, A. Profiling cloud liquid water combining active and passive microwave measurements with cloud model statistics. J. Atmos. Ocean. Technol. 2001, 18, 1354–1366. [Google Scholar] [CrossRef]
- Tselioudis, G.; Rossow, W.B.; Rind, D. Global patterns of cloud optical thickness variation with temperature. J. Clim. 1992, 5, 1484–1495. [Google Scholar] [CrossRef]
- Lau, N.-C.; Crane, M.W. A satellite view of the synoptic-scale organization of cloud properties in Midlatitude and tropical circulation systems. Mon. Weather Rev. 1995, 123, 1984–2006. [Google Scholar] [CrossRef]
- Hogan, R.J.; Illingworth, A.J.; O’Connor, E.J.; Bouniol, D.; Brooks, M.E.; Delanoea, J.; Donovan, D.P.; Eastment, J.D.; Gaussiat, N.; Goddard, J.W.F.; et al. Cloudnet: Evaluation of model clouds using ground-based observations. In Proceedings of the ECMWF Workshop on Parametrization of Clouds in Large-Scale Models, Reading, UK, 13–15 November 2006; Available online: https://www.ecmwf.int/sites/default/files/elibrary/2007/9929-cloudnet-evaluation-model-clouds-using-ground-based-observations.pdf (accessed on 14 October 2023).
- Fix, E.; Hodges, J.L. Discriminatory analysis, nonparametric estimation: Consistency properties. US Air Force Sch. Aviat. Med. 1951, 4, 21–49. [Google Scholar] [CrossRef]
- Merk, D.; Deneke, H.; Pospichal, B.; Seifert, P. Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations. Atmos. Chem. Phys. 2016, 16, 933–952. [Google Scholar] [CrossRef]
- Gupta, S.; McFarququhar, G.M.; O’Brien, J.R.; Poellot, M.R.; Delene, D.J.; Chang, I.; Gao, L.; Xu, F.; Redemann, J. In situ and satellite-based estimates of cloud properties and aerosol-cloud interactions over the southeast Atlantic Ocean. Atmos. Chem. Phys. 2022, 22, 12923–12943. [Google Scholar] [CrossRef]
- Hande, L.B.; Engler, C.; Hoose, C.; Tegen, I. Parameterizing cloud condensation nuclei concentrations during HOPE. Atmos. Chem. Phys. 2016, 16, 12059–12079. [Google Scholar] [CrossRef]
- Paramonov, M.; Kerminen, V.-M.; Gysel, M.; Aalto, P.P.; Andreae, M.O.; Asmi, E.; Baltensperger, U.; Bougiatioti, A.; Brus, D.; Frank, G.P.; et al. A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmos. Chem. Phys. 2015, 15, 12211–12229. [Google Scholar] [CrossRef]
- Li, J.; Jian, B.; Huang, J.; Hu, Y.; Zhao, C.; Kawamoto, K.; Liao, S.; Wu, M. Long-term variation of cloud droplet number concentrations from Space-based Lidar. Remote Sens. Environ. 2018, 213, 144–161. [Google Scholar] [CrossRef]
- Quaas, J.; Boucher, O.; Lohmann, U. Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmos. Chem. Phys. 2006, 6, 947–955. [Google Scholar] [CrossRef]
- Fanourgakis, G.S.; Kanakidou, M.; Nenes, A.; Bauer, S.E.; Bergman, T.; Carslaw, K.S.; Grini, A.; Hamilton, D.S.; Johnson, J.S.; Karydis, V.A.; et al. Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmos. Chem. Phys. 2019, 19, 8591–8617. [Google Scholar] [CrossRef] [PubMed]
- Shuvalova, J.; Chubarova, N.; Shatunova, M. Impact of cloud condensation nuclei reduction on cloud characteristics and solar radiation during COVID-19 lockdown 2020 in Moscow. Atmosphere 2022, 13, 1710. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Zheng, Y.; Hashimshoni, E.; Poehlker, M.L.; Jefferson, A.; Poehlker, C.; Yu, X.; Zhu, Y.; Liu, G.; Yue, Z.; et al. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proc. Natl. Acad. Sci. USA 2016, 113, 5828–5834. [Google Scholar] [CrossRef]
- McComiskey, A.; Feingold, G.; Frisch, A.S.; Turner, D.D.; Miller, M.A.; Chiu, J.C.; Min, Q.; Ogren, J.A. An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res. Atmos. 2009, 114, D09203. [Google Scholar] [CrossRef]
- Mikhailov, E.F.; Ivanova, O.A.; Vlasenko, S.S.; Nebos’ko, E.Y.; Ryshkevich, T.I. Cloud Condensation Nuclei Activity of the Aitken Mode Particles near St. Petersburg, Russia. Izv. Atmos. Ocean. Phys. 2017, 53, 326–333. [Google Scholar] [CrossRef]
- Quaas, J.; Arola, A.; Cairns, B.; Christensen, M.; Deneke, H.; Ekman, A.M.L.; Feingold, G.; Fridlind, A.; Gryspeerdt, E.; Hasekamp, O.; et al. Constraining the Twomey effect from satellite observations: Issues and perspectives. Atmos. Chem. Phys. 2020, 20, 15079–15099. [Google Scholar] [CrossRef]
- Painemal, D.; Chang, F.-L.; Ferrare, R.; Burton, S.; Li, Z.; Smith, W.L., Jr.; Minnis, P.; Feng, Y.; Clayton, M. Reducing uncertainties in satellite estimates of aerosol-cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations. Atmos. Chem. Phys. 2020, 20, 7167–7177. [Google Scholar] [CrossRef]
- Steinke, S.; Eikenberg, S.; Loehnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S. Assessment of small-scale integrated water vapour variability during HOPE. Atmos. Chem. Phys. 2015, 15, 2675–2692. [Google Scholar] [CrossRef]
- Kiszler, T.; Ebell, K.; Schemann, V. A Performance Baseline for the Representation of Clouds and Humidity in Cloud-Resolving ICON-LEM Simulations in the Arctic. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003299. [Google Scholar] [CrossRef]
- Schmale, J.; Henning, S.; Henzing, B.; Keskinen, H.; Sellegri, K.; Ovadnevaite, J.; Bougiatioti, A.; Kalivitis, N.; Stavroulas, I.; Jefferson, A.; et al. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Sci. Data 2017, 4, 170003. [Google Scholar] [CrossRef] [PubMed]
- Twomey, S. The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl. 1959, 43, 243–249. [Google Scholar] [CrossRef]
- Kretzschmar, J.; Stapf, J.; Klocke, D.; Wendisch, M.; Quaas, J. Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic. Atmos. Chem. Phys. 2020, 20, 13145–13165. [Google Scholar] [CrossRef]
- Costa-Suros, M.; Sourdeval, O.; Acquistapace, C.; Baars, H.; Henken, C.C.; Genz, C.; Hesemann, J.; Jimenez, C.; König, M.; Kretzschmar, J.; et al. Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model. Atmos. Chem. Phys. 2020, 20, 5657–5678. [Google Scholar] [CrossRef]
- Wood, R. Relationships between Optical Depth, Liquid Water Path, Droplet Concentration, and Effective Radius in Adiabatic Layer Cloud; University of Washington: Seattle, WA, USA, 2006; Available online: https://atmos.uw.edu/~robwood/papers/chilean_plume/optical_depth_relations.pdf (accessed on 14 October 2023).
- Mittermaier, M. A critical assessment of surface cloud observations and their use for verifying cloud forecasts. Q. J. R. Meteorol. Soc. 2012, 138, 1794–1807. [Google Scholar] [CrossRef]
- Hogan, R.J.; O’Connor, E.J.; Illingworth, A.J. Verification of cloud-fraction forecasts. Q. J. R. Meteorol. Soc. 2009, 135, 1494–1511. [Google Scholar] [CrossRef]
- Morcette, C.J.; O’Connor, E.J.; Petch, J.C. Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations. Q. J. R. Meteorol. Soc. 2012, 138, 964–979. [Google Scholar] [CrossRef]
- Mullammaa, Y.R.; Sulev, M.A.; Pyldmaa, V.K.; Ohvril, H.A.; Niylisk, H.J.; Allenov, M.I.; Tchubakov, L.G.; Kuusk, A.F. Stochastic Structure of Cloud and Radiation fields. NASA TT F-822, Studies in Atmospheric Physics, AN ESR, Institute of Physics and Astronomy. 1975, Volume 18. Available online: https://archive.org/details/nasa_techdoc_19760004517 (accessed on 14 October 2023).
- Kawai, H.; Yukimoto, S.; Koshiro, T.; Oshima, N.; Tanaka, T.; Yoshimura, H.; Nagasawa, R. Significant improvement of cloud representation in the global climate model MRI-ESM2. Geosci. Model Dev. 2019, 12, 2875–2897. [Google Scholar] [CrossRef]
- Tarasova, T.; Chubarova, N. On the calculation of optical thickness of extended low and middle clouds using measurements of solar radiation in three solar spectrum ranges on the Earth’s surface. Izv. Atmos. Ocean. Phys. 1994, 30, 253–257. Available online: https://istina.msu.ru/publications/article/376715/ (accessed on 14 October 2023).
- Crewell, S.; Simmer, C.; Feijt, A.; van Meijgaard, E. CLIWA-NET: BALTEX BRIDGE Cloud Liquid Water Network; International BALTEX Secretariat Publication: Geesthacht, Germany, 2003; Available online: https://baltex-research.eu/publications/SSG_minutes_diverse/BALTEX_NO26.pdf (accessed on 14 October 2023).
- Teixeira, J. Cloud Fraction and Relative Humidity in a Prognostic Cloud Fraction Scheme. Mon. Weather Rev. 2001, 129, 1750–1753. [Google Scholar] [CrossRef]
- Shimpo, A.; Kanamitsu, M.; Iacobellis, S.F. Comparison of Four Cloud Schemes in Simulating the Seasonal Mean Field Forced by the Observed Sea Surface Temperature. Mon. Weather Rev. 2008, 136, 2557–2575. [Google Scholar] [CrossRef]
- Park, R.-S.; Chae, J.-H.; Hong, S.-Y. A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Weather Rev. 2016, 144, 1219–1229. [Google Scholar] [CrossRef]
- Schaefer, S.; Hogan, R.; Rieger, D.; Koehler, M.; Ahlgrimm, M.; Ukkonen, P. Improvements in Radiation, Gas and Cloud Parametrization in ICON with ecRad. ICCARUS 2023. Book of Abstracts 2023. Volume 23. Available online: https://go.dwd-nextcloud.de/index.php/s/cGZw9B35N8W8njF?dir=undefinedpath=%2FTuesdayopenfile=68207 (accessed on 14 October 2023).
- Park, S.; Bretherton, C.S.; Rasch, P.J. Integrating cloud processes in the Community Atmosphere Model, Version 5. J. Clim. 2014, 27, 6821–6856. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Wang, T.; Lv, Q.; Jin, H. A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys. 2015, 15, 519–536. [Google Scholar] [CrossRef]
- Dupuy, F.; Mestre, O.; Serrurier, M.; Burda, K.V.; Zamo, M.; Citlali, N.; Bakkay, M.C.; Jouhaud, C.G.; Mader, M.A.; Oller, G. ARPEGE Cloud Cover Forecast Postprocessing with Convolutional Neural Network. Weather Forecast. 2021, 36, 567–586. [Google Scholar] [CrossRef]
- Baran, A.; Lerch, S.; El Ayari, M.; Baran, S. Machine learning for total cloud cover prediction. Neural Comput. Appl. 2021, 33, 2605–2620. [Google Scholar] [CrossRef]
- Prill, F.; Reinert, D.; Rieger, D.; Zängl, G. ICON Tutorial. Working with the ICON Model; Deutscher Wetterdienst: Offenbach, Germany, 2023; 272p. [Google Scholar] [CrossRef]
- Muench, S.; Lohmann, U. Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM-HAM. J. Adv. Model. Earth Syst. 2020, 12, 1–37. [Google Scholar] [CrossRef]
- Khain, P.; Shpund, J.; Levi, Y.; Khain, A. Warm-phase spectral-bin microphysics in ICON: Reasons of sensitivity to aerosols. Atmos. Res. 2022, 279, 106388. [Google Scholar] [CrossRef]
- Rothenberg, D.; Avramov, A.; Wang, C. On the representation of aerosol activation and its influence on model-derived estimated of the aerosol indirect effect. Atmos. Chem. Phys. 2018, 18, 7961–7983. [Google Scholar] [CrossRef]
- Tonttila, J.; O’Connor, E.J.; Niemelae, S.; Raeisaenen, P.; Jaervinen, H. Cloud base vertical velocity statistics: A comparison between an atmospheric mesoscale model and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 9207–9218. [Google Scholar] [CrossRef]
- Malavelle, F.F.; Haywood, J.M.; Field, P.R.; Hill, A.A.; Abel, S.J.; Lock, A.P.; Shipway, B.J.; McBeath, K. A method to represent subgrid-scale updraft velocity in kilometer-scale models: Implication for aerosol activation. J. Geophys. Res. Atmos. 2014, 119, 4149–4173. [Google Scholar] [CrossRef]
- Khain, A.; Pokrovsky, A.; Pinsky, M.; Seifert, A.; Phillips, V. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci. 2004, 124, 2963–2982. [Google Scholar] [CrossRef]
- Van Weverberg, K.; Morcette, C.J. Sensitivity of cloud-radiative effects to cloud fraction parametrizations in tropical, midlatitude, and arctic kilometer-scale simulations. Q. J. R. Meteorol. Soc. 2022, 148, 2563–2586. [Google Scholar] [CrossRef]
- Naud, C.M.; Del Genio, A.; Mace, G.G.; Benson, S.; Clothiaux, E.E.; Kollias, P. Impact of dynamics and atmospheric state on cloud vertical overlap. J. Clim. 2008, 21, 1758–1770. [Google Scholar] [CrossRef]
Source | Data Spatial and Temporal Resolution | Name | Quantiles | Number | Measurement Error | ||
---|---|---|---|---|---|---|---|
25% | 50% | 75% | |||||
CLOUDNET | 30 s | Liquid water content (LWC), g/m3 | 0.04 | 0.10 | 0.24 | 116,206 | 1.7 dBZ |
Liquid water path (LWP), g/m2 | 57 | 106 | 219 | 3670 | 48 g/m2 | ||
Ice water content, g/m3 | 0.0008 | 0.004 | 0.012 | 93,008 | 1.7 dBZ | ||
MODIS | 5 min, 1 km | LWP, g/m2 | 46 | 99 | 208 | 622,335,910 | 19% |
Droplet effective radius (Reff), um | 11 | 15 | 23 | 8% | |||
Cloud optical thickness (COT) | 5 | 10 | 20 | 9% | |||
BSRN | 10 min | Global solar irradiance (Q), W/m2 | 140 | 225 | 350 | 2123 | 2% (5 W/m2) |
Diffuse solar irradiance (D), W/m2 | 129 | 191 | 287 | 2% (3 W/m2) |
Median Value/Interquartile Range/Average Value, g/m2 | ||||
---|---|---|---|---|
Liquid Water Path Source | Jülich | Lindenberg | Munich | All Sites |
CLOUDNET | 106/152/151 | 89/112/127 | 118/202/215 | 102/139/147 |
ICON grid-scale | 21/129/92 | 32/76/65 | 89/99/107 | 35/101/79 |
ICON total | 53/157/108 | 53/67/69 | 93/81/112 | 61/85/88 |
Number of cases | 121 | 201 | 53 | 375 |
Data | R and Q | CLCL and Q | LWP and Q |
---|---|---|---|
Observations | 0.78 | −0.26 | −0.39 |
Simulations | 0.86 | −0.23 | −0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuvalova, J.; Chubarova, N.; Shatunova, M. Cloud Characteristics and Their Effects on Solar Irradiance According to the ICON Model, CLOUDNET and BSRN Observations. Atmosphere 2023, 14, 1769. https://doi.org/10.3390/atmos14121769
Shuvalova J, Chubarova N, Shatunova M. Cloud Characteristics and Their Effects on Solar Irradiance According to the ICON Model, CLOUDNET and BSRN Observations. Atmosphere. 2023; 14(12):1769. https://doi.org/10.3390/atmos14121769
Chicago/Turabian StyleShuvalova, Julia, Natalia Chubarova, and Marina Shatunova. 2023. "Cloud Characteristics and Their Effects on Solar Irradiance According to the ICON Model, CLOUDNET and BSRN Observations" Atmosphere 14, no. 12: 1769. https://doi.org/10.3390/atmos14121769
APA StyleShuvalova, J., Chubarova, N., & Shatunova, M. (2023). Cloud Characteristics and Their Effects on Solar Irradiance According to the ICON Model, CLOUDNET and BSRN Observations. Atmosphere, 14(12), 1769. https://doi.org/10.3390/atmos14121769