Re-Engineering Dew-Harvesting Cactus Macrostructures to Enhance Water Collection as an Adaptive Climate Change Strategy: An Experimental Comparison
Abstract
:1. Introduction
2. Methods
2.1. Macro Measurements of C. cinerea
2.2. Fabricated Surface Design of C. cinerea
Surface Fabrication Methodology of C. cinerea
2.3. Harvesting, Collection, and Run-Off Efficiency Methodology
- Harvesting condensed water;
- Collection of harvested condensed water;
- Collection of run-off (30°) of condensed water.
2.3.1. Climate Chamber Experiments
2.3.2. Outdoor Experiments
3. Results and Discussion
3.1. Climate Chamber Experiments
3.1.1. Harvesting Data
3.1.2. Collection
3.1.3. Run-Off
Square Verses Diamond Run-Off of Water
Diamond Run-Off (30° to the Horizontal) of Water
3.1.4. Comparison of 15 Min Data
- Flat Replica: there is an effect of the collection method (p < 0.0007). Harvesting was more efficient than the collection (p < 0.0008), and the collection was more efficient than the run-off (p < 0.0143);
- Stem Replica: there is an effect of the collection method (p < 6.7e-6). Harvesting was more efficient than the collection (p < 1.8065e-07), and the collection was more efficient than the run-off (p < 0.0047);
- Stem & Spine Replica: there is an effect of the collection method (p < 3.16e-6). Harvesting was more efficient than the collection (p < 2.88e-05), and the collection was more efficient than the run-off (p < 0.0038);
- Spine Replica: there is an effect of the collection method (p < 5.6423e-09). Harvesting was more efficient than the collection (p < 5.6569e-10), and the collection was more efficient than the run-off (p < 0.0018);
- Perspex: there is an effect of the collection method (p < 1.61e-19). Harvesting was more efficient than the collection (p < 3.07e-8), and collection was more efficient than the run-off (p < 0.0051).
3.2. Outdoor Macro Replicated Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Water Supply and Sanitation Assessment 2000 Report; World Health Organization: Geneva, Switzerland, 2000; p. 9. [Google Scholar]
- Gleick, P.H.; Iwra, M. Basic Water Requirements for Human Activities: Meeting Basic Needs. Water Int. 1996, 21, 83–92. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. World water resources. In Water in Crisis; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Cook, E.R.; Woodhouse, C.A.; Eakin, C.M.; Meko, D.M.; Stahle, D.W. Long-term aridity changes in the western United States. Science 2004, 306, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Hiatt, C.; Fernandez, D.; Potter, C. Measurements of fog water deposition on the California Central Coast. Atmos. Clim. Sci. 2012, 2, 525. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M.; Abou Najm, M.; Beysens, D.; Alameddine, I.; Zeid, E.B.; El-Fadel, M. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 2016, 566, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Muselli, M.; Lekouch, I.; Beysens, D. Physical and Chemical Characteristics of Dew and Rain in North-West Africa with Focus on Morocco: Mapping Past and Future Evolution (2005–2100). Atmosphere 2022, 13, 1974. [Google Scholar] [CrossRef]
- Liu, X.; Beysens, D.; Bourouina, T. Water harvesting from air: Current passive approaches and outlook. ACS Mater. Lett. 2022, 4, 1003–1024. [Google Scholar] [CrossRef]
- Malik, F.T.; Clement, R.M.; Gethin, D.T.; Krawszik, W.; Parker, A.R. Nature’s moisture harvesters: A comparative review. Bioinspiration Biomim. 2014, 9, 031002. [Google Scholar] [CrossRef]
- Sharma, D.K.; Pachchigar, V.; Ranjan, M.; Sikarwar, B.S. Plasma nano-patterning for altering hydrophobicity of copper substrate for moist air condensation. Appl. Surf. Sci. Adv. 2022, 11, 100281. [Google Scholar] [CrossRef]
- Clus, O.; Ouazzani, J.; Muselli, M.; Nikolayev, V.; Sharan, G.; Beysens, D. Comparison of various radiation-cooled dew condensers using computational fluid dynamics. Desalination 2009, 249, 707–712. [Google Scholar] [CrossRef]
- Beysens, D.; Brogginib, F.; Milimouk-Melnytchoukc, I.; Ouazzanid, J.; Tixiere, N. New Architectural Forms to Enhance Dew Collection. Chem. Eng. 2013, 34, 79–84. [Google Scholar]
- Reinhardt, D. Regulation of phyllotaxis. Int. J. Dev. Biol. 2005, 49, 539. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, D.; Pesce, E.-R.; Stieger, P.; Mandel, T.; Baltensperger, K.; Bennett, M.; Traas, J.; Friml, J.; Kuhlemeier, C. Regulation of phyllotaxis by polar auxin transport. Nature 2003, 426, 255–260. [Google Scholar] [CrossRef]
- Nobel, P.S. Environmental Biology of Agaves and Cacti; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247. [Google Scholar] [CrossRef] [PubMed]
- Schill, R.; Barthlott, W.; Ehler, N. Cactus spines under the electron scanning microscope. Cact. Succ. J. 1973, 45, 175–185. [Google Scholar]
- Malik, F.; Clement, R.; Gethin, D.; Beysens, D.; Cohen, R.; Krawszik, W.; Parker, A. Dew harvesting efficiency of four species of cacti. Bioinspiration Biomim. 2015, 10, 036005. [Google Scholar] [CrossRef]
- Malik, F.; Clement, R.; Gethin, D.; Kiernan, M.; Goral, T.; Griffiths, P.; Beynon, D.; Parker, A. Hierarchical structures of cactus spines that aid in the directional movement of dew droplets. R. Soc. Philos. Transl. A 2016, 374, 20160110. [Google Scholar] [CrossRef] [PubMed]
- Larridon, I.; Walter, H.E.; Guerrero, P.C.; Duarte, M.; Cisternas, M.A.; Hernández, C.P.; Bauters, K.; Asselman, P.; Goetghebeur, P.; Samain, M.S. An integrative approach to understanding the evolution and diversity of Copiapoa (Cactaceae), a threatened endemic Chilean genus from the Atacama Desert. Am. J. Bot. 2015, 102, 1506–1520. [Google Scholar] [CrossRef]
- Malik, F. A Study of Dew Harvesting Cacti to Inform the Development of a Biomimetic Inspired Water Collection Device. Ph.D. Thesis, Swansea University, Wales, UK, 2016. [Google Scholar]
- Beysens, D.; Broggini, F.; Milimouk-Melnytchouk, I.; Ouazzani, J.; Tixier, N. Dew architectures—Dew annouces the good weather. In Proceedings of the Confèrence Internationale mc-2012 “Matèrialitès Contemporaines”, Les Grands Ateliers, Villefontaine, France, 30 November 2012. [Google Scholar]
- Maestre-Valero, J.F.; Martinez-Alvarez, V.; Baille, A.; Martín-Górriz, B.; Gallego-Elvira, B. Comparative analysis of two polyethylene foil materials for dew harvesting in a semi-arid climate. J. Hydrol. 2011, 410, 84–91. [Google Scholar] [CrossRef]
- Nilsson, T.M.J.; Vargas, W.E.; Niklasson, G.A.; Granqvist, C.G. Condensation of water by radiative cooling. Renew. Energy 1994, 5, 310–317. [Google Scholar] [CrossRef]
- Medici, M.-G.; Mongruel, A.; Royon, L.; Beysens, D. Edge effects on water droplet condensation. Phys. Rev. E 2014, 90, 062403. [Google Scholar] [CrossRef]
- Trosseille, J.; Mongruel, A.; Royon, L.; Beysens, D. Effective substrate emissivity during dew water condensation. Int. J. Heat Mass Transf. 2022, 183, 122078. [Google Scholar] [CrossRef]
- Meng, Y.; Dang, Y.; Suib, S.L. Materials and devices for atmospheric water harvesting. Cell Rep. Phys. Sci. 2022, 3, 100976. [Google Scholar] [CrossRef]
- Beysens, D. Estimating dew yield worldwide from a few meteo data. Atmos. Res. 2016, 167, 146–155. [Google Scholar] [CrossRef]
- Gao, L.; Mccarthy, T.J. Contact angle hysteresis explained. Langmuir 2006, 22, 6234–6237. [Google Scholar] [CrossRef]
- Park, K.-C.; Kim, P.; He, N.; Aizenberg, J. Condensation on Slippery Asymmetric Bumps. arXiv 2015, arXiv:1501.03253. [Google Scholar] [CrossRef]
- Yetman, D. The Great Cacti: Ethnobotany & Biogeography; University of Arizona Press: Tucson, AZ, USA, 2007; p. 31. [Google Scholar]
- Baghel, V.; Sikarwar, B.S.; Muralidhar, K. Dropwise condensation from moist air over a hydrophobic metallic substrate. Appl. Therm. Eng. 2020, 181, 115733. [Google Scholar] [CrossRef]
- Kidron, G.J. The effect of substrate properties, size, position, sheltering and shading on dew: An experimental approach in the Negev Desert. Atmos. Res. 2010, 98, 378–386. [Google Scholar] [CrossRef]
Percentage (%) of Collected Water Compared with Harvested Water | ||
---|---|---|
10 min | 15 min | |
Flat Replica | 81.83 | 81.20 |
Stem Replica | 72.91 | 82.12 |
Stem & Spine Replica | 69.95 | 76.58 |
Spine Replica | 73.41 | 78.17 |
Perspex | 11.92 | 21.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, T.; Gethin, D.; Boy, F.; Davies, G.; Parker, A. Re-Engineering Dew-Harvesting Cactus Macrostructures to Enhance Water Collection as an Adaptive Climate Change Strategy: An Experimental Comparison. Atmosphere 2023, 14, 1736. https://doi.org/10.3390/atmos14121736
Malik T, Gethin D, Boy F, Davies G, Parker A. Re-Engineering Dew-Harvesting Cactus Macrostructures to Enhance Water Collection as an Adaptive Climate Change Strategy: An Experimental Comparison. Atmosphere. 2023; 14(12):1736. https://doi.org/10.3390/atmos14121736
Chicago/Turabian StyleMalik, Tegwen, David Gethin, Frederic Boy, Gareth Davies, and Andrew Parker. 2023. "Re-Engineering Dew-Harvesting Cactus Macrostructures to Enhance Water Collection as an Adaptive Climate Change Strategy: An Experimental Comparison" Atmosphere 14, no. 12: 1736. https://doi.org/10.3390/atmos14121736
APA StyleMalik, T., Gethin, D., Boy, F., Davies, G., & Parker, A. (2023). Re-Engineering Dew-Harvesting Cactus Macrostructures to Enhance Water Collection as an Adaptive Climate Change Strategy: An Experimental Comparison. Atmosphere, 14(12), 1736. https://doi.org/10.3390/atmos14121736