High Heart Rate Variability Causes Better Adaptation to the Impact of Geomagnetic Storms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- GMSs are a sufficient environmental stress factor for healthy males’ ANS in the ascending phase of the solar cycle.
- ANS response to the exposure to GMSs showed an intensification of both parts of the ANS, though baseline types of ANS self-regulation resulted in different dynamics of alterations during different phases of GMSs.
- The volunteers with high resting HRV/CVC compared with low HRV are more adaptable to the impact of different phases of GMSs, and the adaptation reaction is manifested in a decreased heart rate and increased HRV.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cherry, N. Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar/Geomagnetic Activity. Nat. Hazards 2002, 26, 279–331. [Google Scholar] [CrossRef]
- Breus, T.; Baevsky, R.; Chernikova, A. Effects of geomagnetic disturbances on humans functional state in space flight. J. Biomed. Sci. Eng. 2012, 5, 341–355. [Google Scholar] [CrossRef]
- Dimitrova, S. Investigations of some human physiological parameters in relation to geomagnetic variations of solar origin and meteorological factors. In Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, RAST 2005, Istanbul, Turkey, 9–11 June 2005; pp. 728–733. [Google Scholar] [CrossRef]
- Vencloviene, V.; Babarskien, R.; Kaminskaite, B.; Vasiliauskas, D. The Effect of Solar-Geomagnetic Activity During Hospital Admission on the Prognosis of Cardiovascular Outcomes in Patients with Myocardial Infarction. Br. J. Med. Med. Res. 2013, 3, 1587–1597. [Google Scholar] [CrossRef]
- Cornelissen, G.; Halberg, F.; Breus, T.; Syitkina, E.; Baevsky, R.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar assotiations of heart rate variability and myocardial infarction. J. Atmos. Sol.-Terr. Phys. 2002, 64, 707–720. [Google Scholar] [CrossRef]
- Stoupel, E. Sudden cardiac deaths and ventricular extrasystoles on days of four levels of geomagnetic activity. J. Basic Physiol. Pharmacol. 1993, 4, 357–366. [Google Scholar] [CrossRef]
- Khorseva, N. Using psychophysiological indices to estimate the effect of cosmophysical factors. Izv. Atmos. Ocean. Phys. 2013, 49, 839–852. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Papailiou, M.; Dimitrova, S.; Babayev, E.; Loucas, P. Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat. Hazards 2012, 64, 1447–1459. [Google Scholar] [CrossRef]
- Dimitrova, S.; Angelov, I.; Petrova, E. Solar and geomagnetic activity effects on heart rate variability. Nat. Hazards 2013, 69, 25–37. [Google Scholar] [CrossRef]
- Dimitrova, S. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state. J. Atmos. Sol.-Terr. Phys. 2008, 70, 420–427. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Denton, M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, 111, A07S08. [Google Scholar] [CrossRef]
- Verbanac, G.; Vršnak, B.; Veronig, A.; Temmer, M. Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 2011, 526, A20. [Google Scholar] [CrossRef]
- Alabdulgader, A.; McCraty, R.; Atkinson, M.; Dobyns, Y.; Vainoras, A.; Ragulskis, M.; Stolc, V. Long-Term Study of Heart Rate Variability Responses to Changes in the Solar and Geomagnetic Environment. Sci. Rep. 2018, 8, 2663. [Google Scholar] [CrossRef]
- McCraty, R.; Atkinson, M.; Stolc, V.; Alabdulgader, A.; Vainoras, A.; Ragulskis, M. Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects. Int. J. Environ. Res. Public Health 2017, 14, 770. [Google Scholar] [CrossRef]
- McCraty, R.; Atkinson, M.; Tomasino, D.; Bradley, R.T. The Coherent Heart: Heart-Brain Interactions, Psychophysiological Coherence, and the Emergence of System-Wide Order; Integral Review; Institute of HeartMath, HeartMath Research Center: Boulder Creek, CA, USA, 2006; pp. 12–20. [Google Scholar]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research. Front. Psychol. 2012, 20, 213. [Google Scholar] [CrossRef]
- Porges, S.W. The polyvagal theory: Phylogenetic substrates of a social nervous. Int. J. Psychophysiol. 2001, 42, 123–146. [Google Scholar] [CrossRef]
- Porges, S.W. The Polyvagal Theory: Neurophysiological Foundations of Emotions, Attachment, Communication, and Self-Regulation, 1st ed.; W.W. Norton & Company: New York, NY, USA, 2011. [Google Scholar]
- Balzarotti, S.; Biassoni, F.; Colombo, B.; Ciceri, M. Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biol. Psychol. 2017, 130, 54–66. [Google Scholar] [CrossRef]
- European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart Rate Variability Guidlines. Eur. Heart J. 1996, 17, 354–381. Available online: https://www.escardio.org/static-file/Escardio/Guidelines/Scientific-Statements/guidelines-Heart-Rate-Variability-FT-1996.pdf (accessed on 1 March 1996).
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- Rahman, F.; Pechnik, S.; Gross, D.; Sewell, L.; Goldstein, D.S. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin. Auton. Res. 2011, 21, 133–141. [Google Scholar] [CrossRef]
- Heathers, J.A. Sympathovagal balance from heart rate variability: An obituary. Exp. Physiol. 2012, 97, 556. [Google Scholar] [CrossRef]
- De Lartique, G. Putative roles of neuropeptides in vagal afferent signaling. Physiol. Behav. 2014, 136, 145–150. [Google Scholar] [CrossRef]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.A.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interactions in man and conscious dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef]
- Kember, G.; Fenton, G.; Collier, K.; Armour, J. Aperiodic stochastic resonance in a hysteretic population of cardiac neurons. Phys. Rev. E 2000, 61, 1816–1824. [Google Scholar] [CrossRef]
- Armour, J.A. Potential clinical relevance of the “little brain” on the mammalian heart. Exp. Physiol. 2008, 93, 165–176. [Google Scholar] [CrossRef]
- Bernardi, L.; Valle, F.; Coco, M.; Calciati, A.; Sleight, P. Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovasc. Res. 1996, 32, 234–237. [Google Scholar] [CrossRef]
- Tsuji, H.; Larson, M.G.; Venditti, F.J.; Manders, E.S.; Evans, J.C.; Feldman, C.L.; Levy, D. Impact of reduced heart rate variability on risk for cardiac events: The Framingham Heart Study. Circulation 1996, 94, 2850–2855. [Google Scholar] [CrossRef]
- Giardino, N.D.; Chan, L.; Borson, S. Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: A feasibility study. Appl. Psychophysiol. Biofeedback 2004, 29, 121–133. [Google Scholar] [CrossRef]
- Dekker, J.M.; Schouten, E.G.; Klootwijk, P.; Pool, J.; Swenne, C.A.; Kromhout, D. Heart rate variability fromshort electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am. J. Epidemiol. 1997, 145, 899–908. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Mertgen, A. A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon 2018, 4, e01002. [Google Scholar] [CrossRef]
- Otsuka, K.; Cornélissen, G.; Weydahl, A.; Holmeslet, B.; Hansen, T.L.; Shinagawa, M.; Kubo, Y.; Nishimura, Y.; Omori, K.; Yano, S.; et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed. Pharmacother. 2001, 55 (Suppl. 1), 51s–56s. [Google Scholar] [CrossRef]
- Otsuka, K.; Yamanaka, T.; Cornelissen, G.; Breus, T.; Chibisov, S.M.; Baevsky, R.; Halberg, F.; Siegelova, J.; Fiser, B. Altered chronome of heart rate variability during span of high magnetic activity. Scr. Med. 2000, 2, 111–116. [Google Scholar]
- Gmitrov, J.; Ohkubo, C. Geomagnetic field decreases cardiovascular variability. Electromagn. Magnetobiol. 1999, 18, 291–303. [Google Scholar] [CrossRef]
- Chernouss, S.; Vinogradov, A.; Vlassova, E. Geophysical hazard for human health in the Circumpolar Auroral Belt: Evidence of a relationship between heart rate variation and electromagnetic disturbances. Nat. Hazards 2001, 23, 121–135. [Google Scholar] [CrossRef]
- Beery, A.K.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2011, 35, 565–572. [Google Scholar] [CrossRef]
- Quintana, D.S. Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology 2017, 54, 344–349. [Google Scholar] [CrossRef]
- Nunan, D.; Sandercock, G.R.; Brodie, D.A. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin. Electrophysiol. 2010, 33, 407–1417. [Google Scholar] [CrossRef]
- Geomagnetic Data Service. Available online: https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (accessed on 5 September 2023).
- Menvielle, M.; Iyemori, T.; Marchaudon, A.; Nose, M. Geomagnetic indices, K index limits. In Geomagnetic Observations and Models, 2011th ed.; Mandea, M., Korte, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; p. 201. [Google Scholar]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef]
- Berntson, G.G.; Thomas Bigger, J., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Groves, D.; Brown, V. Vagal nerve stimulation: Are view of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 2005, 29, 493–500. [Google Scholar] [CrossRef]
- Oinuma, S.; Kubo, Y.; Otsuka, K.; Yamanaka, T.; Murakami, S.; Matsuoka, O.; Ohkawa, S.; Cornelissen, G.; Weydahl, A.; Holmeslet, B.; et al. Graded response of heart rate variability, associated with an alteration of geomagnetic activity in a subarctic area. Biomed. Pharmacother. 2002, 56 (Suppl. 2), 284s–288s. [Google Scholar] [CrossRef]
Days | A | HR | SDNN | RMSSD | PNN50 | VLF% | LF% | HF% |
---|---|---|---|---|---|---|---|---|
−1 | 13 | 75.5 ± 5.2 | 84.9 ± 17.4 | 58.4 ± 19.1 | 25.9 ± 9.4 | 30.4 ± 7.4 | 40.2 ± 9.6 | 29.2 ± 6.4 |
0 | 11 | 62.4 ± 8.7 | 94.9 ± 23 | 68.2 ± 20.1 | 34.9 ± 12.8 | 36.6 ± 8.4 | 34.02 ± 7.3 | 29.4 ± 8.1 |
1 | 9 | 70.4 ± 7.9 | 69.9 ± 12.9 | 52.1 ± 18.2 | 27 ± 14.7 | 26.7 ± 4.6 | 40.6 ± 5.1 | 32.6 ± 4.7 |
Between | SS | 652.2 | 3110 | 1330 | 548.3 | 510.5 | 296.2 | 72.09 |
Between | DF | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Between | MS | 326.1 | 1555 | 665.1 | 274.2 | 255.2 | 148.1 | 36.05 |
Within | DF | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
F | 6.25 | 4.53 | 1.81 | 1.86 | 5.04 | 2.41 | 0.82 | |
P | 0.005 | 0.019 | 0.181 | 0.173 | 0.013 | 0.107 | 0.452 | |
t | I to II | 4.781 * | 4.244 * | 1.62 | 2.559 * | 2.910 * | 2.641 * | 0 |
t | II to III | 3.486 * | 1.862 | 2.626 * | 1.814 | 3.978 * | 2.407 | 1.419 |
t | I to III | 0.903 | 2.463 | 1.021 | 0.269 | 1.374 | 0 | 1.471 |
Days | B | HR | SDNN | RMSSD | PNN50 | VLF% | LF% | HF% |
---|---|---|---|---|---|---|---|---|
−1 | 5 | 82.8 ± 1.6 | 54.4 ± 7.8 | 32.4 ± 16.1 | 10.8 ± 13.6 | 26.2 ± 7.6 | 45.7 ± 5.9 | 28.1 ± 7.1 |
0 | 11 | 86.5 ± 3.9 | 54.6 ± 8.6 | 30.7 ± 8.4 | 7.5 ± 5.1 | 28.1 ± 6.5 | 46.5 ± 7.5 | 25.5 ± 7 |
1 | 12 | 83.2 ± 2.6 | 45.8 ± 12.2 | 24 ± 7.6 | 4.3 ± 5.4 | 29.2 ± 11.3 | 46.1 ± 7.9 | 24.9 ± 5.9 |
Between | SS | 75.08 | 532.7 | 370 | 159 | 31.31 | 2.182 | 38.1 |
Between | DF | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Between | MS | 37.54 | 266.4 | 185 | 79.48 | 15.66 | 1.091 | 19.05 |
Within | DF | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
F | 3.95 | 2.56 | 1.95 | 1.51 | 0.19 | 0.02 | 0.45 | |
P | 0.032 | 0.098 | 0.163 | 0.241 | 0.828 | 0.981 | 0.645 | |
t | I to II | 2.551 | 0 | 0.269 | 1.084 | 0.289 | 0 | 0.803 |
t | II to III | 3.296 * | 2.655 * | 2.087 | 1.4 | 0.374 | 0 | 0 |
t | I to III | 0 | 2.082 | 2.182 | 2.196 | 0.586 | 0 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramishvili, A.; Janashia, K.; Tvildiani, L. High Heart Rate Variability Causes Better Adaptation to the Impact of Geomagnetic Storms. Atmosphere 2023, 14, 1707. https://doi.org/10.3390/atmos14121707
Ramishvili A, Janashia K, Tvildiani L. High Heart Rate Variability Causes Better Adaptation to the Impact of Geomagnetic Storms. Atmosphere. 2023; 14(12):1707. https://doi.org/10.3390/atmos14121707
Chicago/Turabian StyleRamishvili, Aleksandre, Ketevan Janashia, and Levan Tvildiani. 2023. "High Heart Rate Variability Causes Better Adaptation to the Impact of Geomagnetic Storms" Atmosphere 14, no. 12: 1707. https://doi.org/10.3390/atmos14121707
APA StyleRamishvili, A., Janashia, K., & Tvildiani, L. (2023). High Heart Rate Variability Causes Better Adaptation to the Impact of Geomagnetic Storms. Atmosphere, 14(12), 1707. https://doi.org/10.3390/atmos14121707