Effects of Ocean-Land Thermal Contrast on the Organized Cloud: Preliminary Results from a Squall Line Case on Hainan Island
Abstract
:1. Introduction
2. Data and Methods
2.1. Squall Line Situation
2.2. Weather Scale Background
2.3. Numerical Simulation Design
3. Results
3.1. Comparison between Simulation and Observation
3.2. Analysis of Water Vapor Conditions
3.3. Analysis of Unstable Conditions
3.4. Thermal Difference between Sea and Land
3.5. Ground-Cold Pool
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Shen, X.Y.; Wang, Y.; Zhang, C.; Wang, Y.; Li, X.F. Mechanism analysis of the upscaling growth process of a squall line in South China. Plateau Meteorol. 2021, 40, 145–158. (In Chinese) [Google Scholar]
- Tetsuya, F. Results of Detailed Synoptic Studies of Squall Lines. Tellus 2010, 7, 405–436. [Google Scholar]
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A theory for strong, long-lived squall lines. J. Atmos. Sci. 1988, 45, 448–463. [Google Scholar] [CrossRef]
- Fovell, R.G.; Ogura, Y. Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci. 1988, 45, 3846–3879. [Google Scholar] [CrossRef]
- Carbone, R.E.; Conway, J.W.; Crook, N.A.; Moncrieff, M.W. The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Weather Rev. 1990, 118, 19–26. [Google Scholar] [CrossRef]
- Johnson, R.H.; Hamilton, P.J. The Relationship of Surface Pressure Features to the Precipitation and Airflow Structure of an Intense Midlatitude Squall Line. Mon. Weather Rev. 1988, 116, 1444–1473. [Google Scholar] [CrossRef]
- Laird, N.F.; Kristovich, D.A.R.; Rauber, R.M. The cape Canaveral sea and river breeaes: Kinematic structure and convectiveinitiation. Mon. Weather Rev. 1995, 123, 2942–2956. [Google Scholar] [CrossRef]
- Dutta, S.; Satyanarayana, A. Sensitivity studies of cloud microphysical schemes of WRF-ARW model in the simulation of trailing stratiform squall lines over the Gangetic West Bengal region. J. Atmos. Solar Terr. Phys. 2020, 209, 105396. [Google Scholar]
- Houze, R.A. Structure and Dynamics of a Tropical Squall–Line System. Mon. Weather Rev. 1977, 105, 1540–1567. [Google Scholar] [CrossRef]
- Ding, Y.H.; Li, H.Z.; Zhang, M.L.; Li, J.S.; Cai, Z.Y. Research on the Conditions of Squall Lines in my country. Chin. J. Atmos. Sci. 1982, 6, 18–27. (In Chinese) [Google Scholar]
- Yao, J.Q.; Dai, J.H.; Yao, Z.Q. Analysis of the cause of a strong squall line and its maintenance and strengthening mechanism. J. Appl. Meteorol. Sci. 2005, 16, 746–753+863. (In Chinese) [Google Scholar]
- Wang, X.M.; Yu, X.D.; Zhou, X.G.; Niu, S.Z. Analysis on the formation and maintenance of the disaster-causing thunderstorms in the “6.3” area. Plateau Meteorol. 2012, 31, 504–514. (In Chinese) [Google Scholar]
- Wang, X.F. Research on Local Strong Convective Weather in Shanghai with Complicated Underlying Surface Environment. Ph.D. Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, 2013. [Google Scholar]
- Wang, Y. Numerical Simulation Study on the Influence of the Characteristics of the Underlying Surface of the Sea and Land on the Thunderstorm Process in Ningbo Area. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2013. [Google Scholar]
- Su, T. Numerical Simulation Study on the Structure of Sea Breeze and Thunderstorm in Hainan Island. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2016. [Google Scholar]
- Huang, L.F.; Bao, F.; Zhi, S.L. Analysis and numerical simulation of an early spring squall line process in Jingdezhen area. Meteorol. Disaster Reduct. Res. 2018, 41, 278–284. (In Chinese) [Google Scholar]
- Lu, R.; Sun, J.H.; Li, D.S. Numerical Experiment of the Influence of Initial Water Vapor Field on the Triggering and Mainte-nance of a Severe Squall Line in Spring in South China. J. Trop. Meteorol. 2019, 35, 37–50. (In Chinese) [Google Scholar]
- Zhu, Q.G.; Lin, J.R.; Shou, S.W.; Tang, D.S. Principles and Methods of Synoptics; Meteorological Press: Beijing, China, 2007; pp. 407–415. [Google Scholar]
- Bryan, G.H.; Morrison, H. Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics. Mon. Weather Rev. 2012, 140, 202–225. [Google Scholar] [CrossRef]
- Lu, J.; Qie, X.; Xiao, X.; Jiang, R.; Mansell, E.R.; Fierro, A.O.; Liu, D.; Chen, Z.; Yuan, S.; Sun, M.; et al. Effects of Convective Mergers on the Evolution of Microphysical and Electrical Activity in a Severe Squall Line Simulated by WRF Coupled with Explicit Electrification Scheme. J. Geophys. Res. 2022, 127, e2021JD036398. [Google Scholar]
- Cholette, M.; Milbrandt, J.A.; Morrison, H.; Paquin-Ricard, D.; Jacques, D. Combining Triple-Moment Ice With Prognostic Liquid Fraction in the P3 Microphysics Scheme: Impacts on a Simulated Squall Line. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003328. [Google Scholar] [CrossRef]
- Ludlam, F.H. Severe Local Storms: A Review. In Severe Local Storms; American Meteorological Society: Boston, MA, USA, 1963; pp. 1–32. [Google Scholar]
- Klimowski, B.A.; Hjelmfelt, M.R.; Bunkers, M.J. Radar Observations of the Early Evolution of Bow Echoes. Weather Forecast. 2004, 19, 727–734. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, F.; Markowski, P.; Wu, D.; Zhao, K. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China. J. Atmos. Sci. 2012, 69, 1182–1207. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, F.; Markowski, P.; Wu, D.; Zhao, K. An Observational Analysis of a Persistent Extreme Precipitation Event in the Post-Flood Season over a Tropical Island in China. Atmosphere 2022, 13, 679. [Google Scholar]
- Li, H.; Cao, J.; Li, X.; Wu, Z. Application of wind partitioning technique in a limited domain to the characteristics of the evolution of a squall line over Hainan Island. J. Nat. Disasters 2021, 30, 24–35. [Google Scholar]
- Zhang, C.; Shen, X.Y.; Zhang, L.; Wang, L.; Guo, C.Y.; Li, X.F. Multiscale energy interaction analysis of squall line upscale growth in South China. J. Trop. Meteorol. 2021, 37, 102–111. (In Chinese) [Google Scholar]
- Cui, Q.; Wang, C.M.; Zhang, Y.; Huang, H.; Yue, F.L. Analysis and numerical simulation of a squall line with thunderstorm and gale. Sci. Meteorol. Sin. 2017, 37, 673–682. (In Chinese) [Google Scholar]
- Liang, Z.; Wang, D. Sea breeze and precipitation over Hainan Island. Q. J. R. Meteorol. Soc. 2017, 143, 137–151. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Qi, D.; Lan, G.; Fraedrich, K. Effects of land-use change on eco-environmental quality in Hainan Island, China. Ecol. Indic. 2020, 109, 105777. [Google Scholar] [CrossRef]
- Kelliher, F.M.; Hollinger, D.Y.; Schulze, E.D.; Vygodskaya, N.N.; Byers, J.N.; Hunt, J.E.; McSeveny, T.M.; Milukova, I.; Sogatchev, A.; Varlargin, A.; et al. Evaporation from an eastern Siberian larch forest. Agric. For. Meteorol. 1997, 85, 135–147. [Google Scholar] [CrossRef]
- Geng, S.W.; Wu, Z.X.; Yang, C. Variation characteristics of water vapor flux of rubber forest ecosystem and its response to environmental factors in Danzhou, Hainan. J. Northwest For. Univ. 2021, 36, 77–85. (In Chinese) [Google Scholar]
- Fu, S.; Rotunno, R.; Chen, J.; Deng, X.; Xue, H. A large-eddy simulation study of deep-convection initiation through the collision of two sea-breeze fronts. Atmos. Chem. Phys. 2021, 21, 9289–9308. [Google Scholar] [CrossRef]
- Li, N.; Ran, L.K.; Gao, S.T. Numerical simulation and diagnostic analysis of a squall line process in East China. Chin. J. Atmos. Sci. 2013, 37, 595–608. (In Chinese) [Google Scholar]
- Abbs, D.J.; Physick, W.L. Sea-breeze observations and modeling: A review. Aust. Meteorol. Mag. 1992, 41, 7–19. [Google Scholar]
- Miller, S.T.K.; Keim, B.D.; Talbot, R.W.; Mao, H. Sea breeze: Structure, forecasting, and impacts. Rev. Geophys. 2003, 41, 1–31. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. Sea and lake breezes: A review of numerical studies. Bound Layer. Meteorol. 2010, 137, 1–29. [Google Scholar] [CrossRef]
- Stull, R.S. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Norwell, MA, USA, 1988; pp. 416–419. [Google Scholar]
- Pei, C.C.; Zhao, Y.; Cheng, S. Analysis of the occurrence and development mechanism of a squall line process along the coast of Fujian. Meteorol. Sci. Technol. 2019, 47, 841–850. [Google Scholar]
- Johnson, R.H.; Parker, M.D. Structures and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci. 2004, 61, 545–567. [Google Scholar]
Parameters | Grid 1 (d01) | Grid 2 (d02) | Grid 3 (d03) | Grid 4 (d04) |
---|---|---|---|---|
Dimension (x,y) | 99 × 99 | 216 × 228 | 342 × 384 | 462 × 567 |
Grid size (km) | 27 | 9 | 3 | 1 |
Map projection | Lambert conformal conic projection | Lambert conformal conic projectio | Lambert conformal conic projectio | Lambert conformal conic projectio |
Output time (min) | 60 | 60 | 60 | 60 |
Microphysical scheme | WSM6 | WSM6 | WSM6 | WSM6 |
Cumulus parameterization scheme | Tiedtke | Tiedtke | / | / |
Boundary layer scheme | YSU | YSU | YSU | YSU |
Radiation scheme | RRTMG | RRTMG | RRTMG | RRTMG |
Land surface scheme | Noah | Noah | Noah | Noah |
Surface-layer scheme | Monin-Obukhov | Monin-Obukhov | Monin-Obukhov | Monin-Obukhov |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Yang, K.; Deng, L.; Chen, J. Effects of Ocean-Land Thermal Contrast on the Organized Cloud: Preliminary Results from a Squall Line Case on Hainan Island. Atmosphere 2023, 14, 1651. https://doi.org/10.3390/atmos14111651
Wu Q, Yang K, Deng L, Chen J. Effects of Ocean-Land Thermal Contrast on the Organized Cloud: Preliminary Results from a Squall Line Case on Hainan Island. Atmosphere. 2023; 14(11):1651. https://doi.org/10.3390/atmos14111651
Chicago/Turabian StyleWu, Qiuyu, Kai Yang, Liping Deng, and Jinghua Chen. 2023. "Effects of Ocean-Land Thermal Contrast on the Organized Cloud: Preliminary Results from a Squall Line Case on Hainan Island" Atmosphere 14, no. 11: 1651. https://doi.org/10.3390/atmos14111651
APA StyleWu, Q., Yang, K., Deng, L., & Chen, J. (2023). Effects of Ocean-Land Thermal Contrast on the Organized Cloud: Preliminary Results from a Squall Line Case on Hainan Island. Atmosphere, 14(11), 1651. https://doi.org/10.3390/atmos14111651