Investigation of Land–Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China
Abstract
:1. Introduction
2. Model and Data
3. Experiments
4. Methods
4.1. The Local Coupling Metrics
4.2. The Ensemble Statistical Metrics
5. Results
5.1. Simulation Overview
5.1.1. Synoptic and Thermodynamics
5.1.2. Convection and Rainfall
5.1.3. Underlying Surface Characteristics
5.2. The Local Coupling Evaluation
5.2.1. CHF
5.2.2. RHT
5.2.3. HCF
5.2.4. MDT
5.2.5. TCP
5.2.6. SMM
5.3. The Ensemble Statistical Relations
5.3.1. Spatially Averaged Relations
5.3.2. Point-Wise Relations
6. Conclusions
- The long-lasting Low system with an upper warm flow and a lower strong cold front, the mid-low layer thermodynamic situations, the convection and rainfall spatiotemporal characteristics, and the diurnal surface thermal characteristics of the model are consistent with the available observations. However, the stratospheric (higher than 400 hPa) thermodynamics that relate to the northern developed rainfall and convection, and the over mountain areas have been found to be biased. Except for in the case of the mountain areas, the main characteristics during the mid-low atmospheric layers and the surface have been well documented in this modeled event.
- In CHF, the PBL near the west of the storm center is likely too stable for rain to occur (SRC), and the PBL in the northwest needs additional CTP to trigger convection (TR) while other regions have shown different advantages (e.g., ACA, WSA, and DSA) and are favor of afternoon convection. In terms of RHT, the great contributions to RHT from surface evaporation (SE), PBL warming (BLW), and non-evaporative factors (NE) indicate the dominant roles of these factors in the local PBL clouds that developed before noon, with the SE of around 0.8 and the NE of around 2 being especially significant. In terms of HCF, the noon lower buoyant mixing temperature deficits (e.g., around 274 K) with developing clouds could trigger convection except in the SRC region, while the significant energy transformation of the PBL occurs when the main rainstorm ends and these dominate the development of daytime PBL cloud but with regional differences. In terms of MDT, both the daytime PBL and surface latent energy contributions of around 100 and 280 W/m2, respectively, dominate the relationship between the surface and the PBL clouds; nevertheless, soil moisture and atmospheric forcing greatly shape the daytime distribution of surface fluxes characterized as low entrainment sensible flux () but high entrainment latent flux (). In terms of TCP, surface coupling surrounding the central east domain occurs in the local afternoon and is significant during this event. In terms of SMM, this increases with time, and the comparable distributions of both initial SM and developed rainfall at the end of the day show that both the surface soil and the upper rainfall shape the spatial distribution of SMM.
- Moist static energy () is more general than PBL height () during the step-wise relationship chains for both DP and WP. The deeper PBL with a steeper surface flux slope in DP and the shallower PBL with a smoother surface flux slope in WP are significantly different. However, the point-wise surface–rainfall relationship chains interfaced by or are consistently negative for both DP and WP, while the relation intensity of DP is larger than WP. Nevertheless, the point-wise relationship chains are highly shaped by atmospheric forcing (e.g., environmental flows). This is especially pronounced for the chains characterized by the relationships between surface flux, PBL height, and rainfall.
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Yang, M.; Wang, H.; Liu, K.; Dong, N.; Wang, H.J.; Zhang, L.M.; Fan, W. Moisture sources and atmospheric circulation associated with the record-breaking rainstorm over Zhengzhou city in July 2021. Nat. Hazards 2023, 116, 817–836. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, T.; Xie, L.; Zhang, R.H.; Zhang, W.; Xu, H.X.; Cao, F.Q.; Chen, B. Tropical cyclone over the western Pacific triggers the record-breaking “21/7” extreme rainfall in Henan, central-eastern China. Environ. Res. Lett. 2022, 17, 124003. [Google Scholar]
- Xue, M. Preface to the Special Collection on the July 2021 Zhengzhou, Henan Extreme Rainfall Event. Adv. Atmos. Sci. 2023, 40, 335–336. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Yu, M.; Liang, X.D.; Xia, R.D.; Gao, Y.Y.; Gao, X.Y.; Yin, J.F. On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021: A Convection-Permitting Ensemble Modeling Study. Adv. Atmos. Sci. 2023, 40, 393–409. [Google Scholar] [CrossRef]
- Betts, A.K. Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Sys. 2009, 1, 4. [Google Scholar] [CrossRef]
- Song, Y.M.; Guo, W.D.; Zhang, Y.C. Numerical study of impacts of soil moisture on the diurnal and seasonal cycles of sensible/latent heat fluxes over semi-arid region. Adv. Atmos. Sci. 2009, 26, 319–326. [Google Scholar] [CrossRef]
- Beljaars, A.; Viterbo, P.; Miller, M.; Betts, A.K. The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and SM anomalies. Mon. Wea. Rev. 1996, 124, 362–383. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J.; Higgins, R.W.; Van den Dool, H.M. Observational evidence that soil moisture variations affect precipitation, Geophys. Res. Lett. 2003, 30, 1241. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Li, C.; Xu, L.; Xiao, W. The influence of soil moisture on convective activity: A review. Theor. Appl. Climatol. 2022, 149, 221–232. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, B.; Kanae, S.; Kowalczyk, E.; Lawreencce, D.; et al. Regions of Strong Coupling Between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef]
- Guillod, B.P.; Orlowsky, B.; Miralles, D.G.; Teuling, A.J.; Seneviratne, S. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 2015, 6, 6443. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.; Dirmeyer, P.A. Soil moisture-evaporation coupling shifts into new gears under increasing CO2. Nat. Commun. 2023, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, X.; Guo, J.; Sheng, Z. The ratio distribution of evapotranspiration to precipitation well related with soil thickness of Karst watershed in southwest China. J. Geophys. Res. Atmos. 2023, 128, e2022JD037951. [Google Scholar] [CrossRef]
- Divyansh, C.; Francina, D.; Christopher, M.T.; Cornelia, K.; Stephen, W.N. Dry-to-Wet Soil Gradients Enhance Convection and Rainfall over Subtropical South America. J. Hydrometeor. 2023. [Google Scholar] [CrossRef]
- Quintanar, A.; Mahmood, R.; Mofley, M.; Yan, J.; Loughrin, J.; Lovanh, N. Simulation of boundary layer trajectory dispersion sensitivity to soil moisture conditions: MM5 and Noah-based investigation. Atmos. Environ. 2009, 43, 3774–3785. [Google Scholar] [CrossRef]
- Suarez, A.; Mahmood, R.; Quintanar, A.; Beltrán-Przekurat, A.; Pielke Sr, R. A comparison of the MM5 and the RAMS simulations for land-atmosphere interactions under varying soil moisture. Tellus 2014, 66, 178–183. [Google Scholar]
- Mahmood, R.; Leeper, R.; Quintanar, A. Sensitivity of planetary boundary layer atmosphere to historical and future changes of land use/land cover, vegetation fraction, and soil moisture in Western Kentucky, USA. Global Planet. Chang. 2011, 78, 36–53. [Google Scholar] [CrossRef]
- Leeper, R.; Mahmood, R.; Quintanar, A. Influence of Karst Landscape on Planetary Boundary Layer Atmosphere: A Weather Research and Forecasting (WRF) Model-Based Investigation. J. Hydrometeor. 2011, 12, 1512–1529. [Google Scholar] [CrossRef]
- Simon, J.S.; Bragg, A.D.; Dirmeyer, P.A.; Chaney, N.W. Semi-coupling of a field-scale resolving land-surface model and WRF-LES to investigate the influence of land-surface heterogeneity on cloud development. J. Adv. Model. Earth Sys. 2021, 13, e2021MS002602. [Google Scholar] [CrossRef]
- Santanello, J.A.; Lawston, P.; Kumar, S.; Dennis, E. Understanding the impacts of soil moisture initial conditions on NWP in the context of land–atmosphere coupling. J. Hydrometeor. 2019, 20, 793–819. [Google Scholar] [CrossRef]
- Findell, K.L.; Eltahir, E. Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeor. 2003, 4, 552–569. [Google Scholar] [CrossRef]
- Findell, K.L.; Eltahir, E. Atmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part II: Feedbacks within the Continental United States. J. Hydrometeor. 2003, 4, 570–583. [Google Scholar] [CrossRef]
- Ek, M.; Mahrt, L. Daytime evolution of relative humidity at the boundary-layer top. Mon. Wea. Rev. 1994, 122, 2709–2721. [Google Scholar] [CrossRef]
- Ek, M.; Holtslag, A. Influence of soil moisture on boundary cloud development. J. Hydrometeor. 2004, 5, 86–99. [Google Scholar] [CrossRef]
- Tawfik, A.B.; Dirmeyer, P.A. A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys. Res. Lett. 2014, 41, 173–178. [Google Scholar] [CrossRef]
- Tawfik, A.B.; Dirmeyer, P.A.; Santanello, J.A. The heated condensation framework. part i: Description and southern great plains case study. J. Hydrometeor. 2015, 16, 150603105509002. [Google Scholar] [CrossRef]
- Tawfik, A.B.; Dirmeyer, P.A.; Santanello, J.A. The heated condensation framework. part ii: Climatological behavior of convective initiation and land-atmosphere coupling over the conterminous united states. J. Hydrometeor. 2015, 16, 150603105509002. [Google Scholar] [CrossRef]
- Santanello, J.A.; Peters-Lidard, C.D.; Kumar, S. A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor. 2009, 10, 577–599. [Google Scholar] [CrossRef]
- Delworth, T.L.; Manabe, S. The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate 1988, 1, 523–547. [Google Scholar] [CrossRef]
- Delworth, T.L.; Manabe, S. The influence of soil wetness on near-surface atmospheric variability. J. Climate 1989, 2, 1447–1462. [Google Scholar] [CrossRef]
- Dirmeyer, P.A. The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett. 2011, 38, L16702. [Google Scholar] [CrossRef]
- Guo, Z.C.; Dirmeyer, P.A.; Koster, R.D.; Sud, Y.; Bonan, G.; Oleson, K.; Chan, E.; Versghy, D.; Cox, P.; Gordon, C.T.; et al. GLACE: The Global Land–Atmosphere Coupling Experiment Part II: Analysis. J. Hydrometeor. 2006, 7, 611–625. [Google Scholar] [CrossRef]
- Santanello, J.A.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.; Tawfik, A.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.; Heerwaardeen, C.; et al. Land–atmosphere interactions: The LoCo perspective. BAMS 2018, 99, 1253–1272. [Google Scholar] [CrossRef]
- Sun, G.; Hu, Z.; Ma, Y.; Xie, Z.; Yang, S.; Wang, J. Analysis of local land-atmosphere coupling in rainy season over a typical underlying surface in Tibetan Plateau based on field measurements and ERA5. Atmos. Res. 2020, 243, 105025. [Google Scholar] [CrossRef]
- Sun, G.; Hu, Z.; Ma, Y.; Xie, Z.; Yang, S. Simulation analysis of local land-atmosphere coupling in rainy season over a typical underlying surface in Tibetan Plateau. Hydrol. Earth Sys. Sci. 2020, 24, 5937–5951. [Google Scholar] [CrossRef]
- Abdolghafoorian, A.; Dirmeyer, P.A. Validating the land-atmosphere coupling behavior in weather and climate models using observationally based global products. J. Hydrometeor. 2021, 22, 1507–1523. [Google Scholar] [CrossRef]
- Zhao, C.; Meng, X.; Li, Y.; Lyu, S.; Guo, J.; Liu, H. Impact of soil moisture on afternoon convection triggering over the Tibetan Plateau based on 1-D boundary layer model. J. Geophys. Res. Atmos. 2022, 127, e2021JD035591. [Google Scholar] [CrossRef]
- Quintanar, A.; Mahmood, R. Ensemble forecast spread induced by soil moisture changes over mid-south and neighbouring mid-western region of the USA. Tellus 2012, 64, 145–153. [Google Scholar] [CrossRef]
- Min, J.Z.; Guo, Y.K.; Wang, G.J. Impacts of soil moisture on typical frontal rainstorm in yangtze river basin. Atmosphere 2016, 7, 42. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). NCAR Tech. Note 2008, 475, 113. [Google Scholar]
- Thompson, G.; Field, P.; Rasmussen, R.; Hall, W. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Dudhia, J.; Gonzalez–Rouco, J.F.; Navarro, J.; Montavez, J.P.; Garcia–Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Andras, H.; Paul, B.; Gionata, B.; Dick, D.; Hans, H.; Joaquin, M.S.; Iryna, R.; Adrian, S.; Cornel, S. The impact of observations in the ECMWF latest reanalysis system. In Proceedings of the WMO Workshop, Shanghai, China, 10–13 May 2016. [Google Scholar]
- Wang, M.Y.; Yao, S.; Jiang, L.P.; Liu, Z.Q.; Shi, C.X.; Hu, K.X.; Zhang, T.; Zhang, Z.S.; Liu, J.W. Collection and Pre-Processing of Satellite Remote-Sensing Data in CRA-40 (CMA’s Global Atmospheric ReAnalysis). Adv. Meteoro. Sci. Tech. 2018, 8, 158–163. (In Chinese) [Google Scholar]
- Beaudoing, H.; Rodell, M. NASA/GSFC/HSL(2020), GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://disc.gsfc.nasa.gov/ (accessed on 4 September 2023).
- Sun, S.; Shi, C.; Pan, Y.; Bai, L.; Xu, B.; Zhang, T.; Han, S.; Jiang, L. Applicability assessment of the 1998-2018 CLDAS multi-source precipitation fusion dataset over China. J. Meteoro. Res. 2020, 34, 879–892. [Google Scholar] [CrossRef]
- Fieller, E.C.; Hartley, H.O.; Pearson, E.S. Tests for rank correlation coefficients. I. Biometrika 1957, 44, 470–481. [Google Scholar] [CrossRef]
- Ghosh, K.G. Analysis of Rainfall Trends and its Spatial Patterns During the Last Century over the Gangetic West Bengal, Eastern India. J. Geovis. Spat. Anal. 2018, 2, 15. [Google Scholar] [CrossRef]
- Mantovani, J.R.; Bueno, G.T.; Alcântara, E.; Park, E.; Cunha, A.; Londee, L.; Massi, K.; Marengo, J. Novel Landslide Susceptibility Mapping Based on Multi-criteria Decision-Making in Ouro Preto, Brazil. J. Geovis. Spat. Anal. 2023, 7, 7. [Google Scholar] [CrossRef]
- Filonchyk, M.; Yan, H.; Zhang, Z.; Yang, S.; Li, W.; Li, Y. Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Sci. Rep. 2019, 9, 6174. [Google Scholar] [CrossRef]
- Shen, F.; Min, J.; Xu, D. Assimilation of radar radial velocity data with the WRF Hybrid ETKF–3DVAR system for the prediction of Hurricane Ike (2008). Atmos. Res. 2016, 169, 127–138. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Min, J.; Chu, Z.; Li, X. Assimilation of radar radial velocity data with the WRF hybrid 4DEnVar system for the prediction of hurricane Ike (2008). Atmos. Res. 2020, 234, 104771. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Huang, X.Y.; Min, J.; Wang, H. Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol. Atmos. Phys. 2013, 122, 1–18. [Google Scholar] [CrossRef]
- Shen, F.; Min, J. Assimilating AMSU-A radiance data with the WRF Hybrid En3DVAR system for track predictions of Typhoon Megi (2010). Adv. Atmos. Sci. 2015, 32, 1231–1243. [Google Scholar] [CrossRef]
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY–3B satellite with the WRF Hybrid–3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Sys. 2016, 8, 1014–1028. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Fan, S.; Chen, M.; Shen, F. Assimilating all-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China. Adv. Atmos. Sci. 2021, 38, 661–676. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Liu, Z.; Shen, F. All-sky infrared radiance data assimilation of FY-4A AGRI with different physical parameterizations for the prediction of an extremely heavy rainfall event. Atmos. Res. 2023, 293, 106898. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Li, H.; Min, J.; Liu, R. Assimilation of GPM Microwave Imager Radiance data with the WRF hybrid 3DEnVar system for the prediction of Typhoon Chan-hom (2015). Atmos. Res. 2021, 251, 105422. [Google Scholar] [CrossRef]
- Song, L.; Shen, F.; Shao, C.; Shu, A.; Zhu, L. Impacts of 3DEnVar-Based FY-3D MWHS-2 Radiance Assimilation on Numerical Simulations of Landfalling Typhoon Ampil (2018). Remote Sens. 2022, 14, 6037. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D.; Liu, R.; Shen, F. Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021). Remote Sens. 2022, 14, 4718. [Google Scholar] [CrossRef]
- Shu, A.; Shen, F.; Jiang, L.; Zhang, T.; Xu, D. Assimilation of Clear-sky FY-4A AGRI radiances within the WRFDA system for the prediction of a landfalling Typhoon Hagupit (2020). Atmos. Res. 2022, 283, 106556. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y. Spatial-temporal variability pattern of multi-depth soil moisture jointly driven by climatic and human factors in China. J. Hydro. 2023, 619, 129313. [Google Scholar] [CrossRef]
Short Name | Full Name | Reference Diagnoses * |
---|---|---|
CHF | Convective trigger potential (CTP) and Humidity index (HIlow) framework | |
HCF | Heated condensation framework | , . , , , ) |
MDT | Mixing diagrams and thermodynamics | |
RHT | Relative Humidity tendency | . |
TCP | Terrestrial coupling parameter | |
SMM | Soil moisture memory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Shao, C.; Su, A. Investigation of Land–Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China. Atmosphere 2023, 14, 1474. https://doi.org/10.3390/atmos14101474
Guo Y, Shao C, Su A. Investigation of Land–Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China. Atmosphere. 2023; 14(10):1474. https://doi.org/10.3390/atmos14101474
Chicago/Turabian StyleGuo, Yakai, Changliang Shao, and Aifang Su. 2023. "Investigation of Land–Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China" Atmosphere 14, no. 10: 1474. https://doi.org/10.3390/atmos14101474
APA StyleGuo, Y., Shao, C., & Su, A. (2023). Investigation of Land–Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China. Atmosphere, 14(10), 1474. https://doi.org/10.3390/atmos14101474