Sensitivity of Typhoon Forecast to Prescribed Sea Surface Temperature Data
Abstract
:1. Introduction
2. Model Configuration and Experimental Design
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Change 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Weinkle, J.; Landsea, C.; Collins, D.; Musulin, R.; Crompton, R.P.; Klotzbach, P.J.; Pielke, R. Normalized hurricane damage in the continental United States 1900–2017. Nat. Sustain. 2018, 1, 808–813. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Kossin, J.P. A global slowdown of tropical-cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Chen, S.; Zhou, M.; Tu, C.; Zhang, A.; Chen, Y.; Li, W. Northward Shift in Landfall Locations of Tropical Cyclones over the Western North Pacific during the Last Four Decades. Adv. Atmos. Sci. 2022, 39, 304–319. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Studholme, J.; Fedorov, A.V.; Gulev, S.K.; Emanuel, K.; Hodges, K. Poleward expansion of tropical cyclone latitudes in warming climates. Nat. Geosci. 2022, 15, 14–28. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Bai, L.; Wan, R. Verification of tropical cyclone operational forecast in 2018. In Proceedings of the ESCAP/WMO Typhoon Committee, Guangzhou, China, 26 February–1 March 2019; p. 26. [Google Scholar]
- Morgan, S.T.; Pu, Z.; Westrelin, S.; Yamaguchi, M. SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES, November 2006. Available online: https://severeweather.wmo.int/iwtc/document/Topic_3_3_Chun_Chieh_Wu.pdf (accessed on 15 October 2022).
- Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.; Tallapragada, V. Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Weather. Forecast. 2020, 35, 1913–1922. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, D.-L.; Carton, J.; Atlas, R. On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Weather. Forecast. 2011, 26, 885–901. [Google Scholar] [CrossRef]
- Mohanty, U.; Osuri, K.K.; Tallapragada, V.; Marks, F.D.; Pattanayak, S.; Mohapatra, M.; Rathore, L.; Gopalakrishnan, S.; Niyogi, D. A great escape from the Bay of Bengal “super sapphire–Phailin” tropical cyclone: A case of improved weather forecast and societal response for disaster mitigation. Earth Interact. 2015, 19, 1–11. [Google Scholar] [CrossRef]
- Srinivas, C.; Bhaskar Rao, D.; Yesubabu, V.; Baskaran, R.; Venkatraman, B. Tropical cyclone predictions over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Q. J. R. Meteorol. Soc. 2013, 139, 1810–1825. [Google Scholar] [CrossRef]
- Brand, S. The effects on a tropical cyclone of cooler surface waters due to upwelling and mixing produced by a prior tropical cyclone. J. Appl. Meteorol. Climatol. 1971, 10, 865–874. [Google Scholar] [CrossRef]
- Wada, A.; Niino, H.; Nakano, H. Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998). J. Oceanogr. 2009, 65, 373–396. [Google Scholar] [CrossRef]
- Chiang, T.-L.; Wu, C.-R.; Oey, L.-Y. Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr. 2011, 41, 221–233. [Google Scholar] [CrossRef]
- Bender, M.A.; Ginis, I.; Kurihara, Y. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res. Atmos. 1993, 98, 23245–23263. [Google Scholar] [CrossRef]
- Chan, J.C.; Duan, Y.; Shay, L.K. Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci. 2001, 58, 154–172. [Google Scholar] [CrossRef]
- Schade, L.R.; Emanuel, K.A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.; Cheon, W.; Hong, S.; Raasch, S. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound. -Layer Meteorol. 2003, 107, 401–427. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather. Rev. 1993, 121, 1493–1513. [Google Scholar] [CrossRef]
- Bae, S.Y.; Hong, S.-Y.; Lim, K.-S.S. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model. Adv. Meteorol. 2016, 2016, 5070154. [Google Scholar] [CrossRef]
- Lee, J.-B.; Lee, D.-K. Impact of cumulus parameterization schemes with different horizontal grid sizes on prediction of heavy rainfall. Atmosphere 2011, 21, 391–404. [Google Scholar]
- Lee, J.-W.; Hong, S.-Y. A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model. Atmosphere 2006, 16, 319–332. [Google Scholar]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Chelton, D.B.; Wentz, F.J. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Am. Meteorol. Soc. 2005, 86, 1097–1116. [Google Scholar] [CrossRef] [Green Version]
- Bongirwar, V.; Rakesh, V.; Kishtawal, C.; Joshi, P. Impact of satellite observed microwave SST on the simulation of tropical cyclones. Nat. Hazards 2011, 58, 929–944. [Google Scholar] [CrossRef]
- Liu, X.; Wei, J.; Zhang, D.L.; Miller, W. Parameterizing sea surface temperature cooling induced by tropical cyclones: 1. Theory and an application to Typhoon Matsa (2005). J. Geophys. Res. Ocean. 2019, 124, 1215–1231. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kawamura, R. Active role of sea surface temperature changes over the Kuroshio in the development of distant tropical cyclones in boreal fall. J. Geophys. Res. Atmos. 2021, 126, e2021JD035056. [Google Scholar] [CrossRef]
- Kim, D.; Kim, H.-S. Relationship between the Tropical Sea Surface Temperature Distribution and Initiation Timing of the Typhoon Season in the Northwestern Pacific. J. Clim. Change Res. 2017, 8, 11–19. [Google Scholar] [CrossRef]
- Setiawan, R.Y.; Susanto, R.D.; Wirasatriya, A.; Alifdini, I.; Puryajati, A.D.; Maslukah, L.; Nurdin, N. Impacts of tropical cyclone Seroja on the phytoplankton chlorophyll-a and sea surface temperature in the Savu Sea, Indonesia. IEEE Access 2021, 9, 152938–152944. [Google Scholar] [CrossRef]
- Yu, S.; Subrahmanyam, M. Typhoon-Induced SST Cooling and Rainfall Variations: The Case of Typhoon CHAN-HOM and Nangka. Open Access Libr. J. 2017, 4, 1–12. [Google Scholar] [CrossRef]
Version | WRF V4.1.2 | |
Domains | D01 | D02 |
Horizontal Resolution | 12 km | 4 km |
Grids (west-east × south-north) | 491 × 501 | 841 × 871 |
Microphysics scheme | WSM6 | |
Cumulus scheme | KF | X |
PBL scheme | YSU | |
Long-wave/short-wave radiation scheme | RRTM/Dudhia | |
LSM | Unified Noah LSM |
OISST | HYCOM | |
---|---|---|
Period | September 1981–present | January 2003–present |
Spatial Resolution (latitude/longitude) | 0.25°/0.25° | 0.03°/0.08° |
Temporal resolution | Daily | 3-hour intervals |
Input data | AVHRR, In situ | AVHRR, AMSR-E, METOP-A, GOES, MeteoSat-2, AATSR, CDT, XBT, In situ |
Agency | NCEI/NOAA | U.S NRL |
OI | HY | ||
---|---|---|---|
Maysak | Bias | 1.10 | −0.14 |
RMSE | 4.26 | 3.18 | |
Haishen | Bias | 3.50 | 2.52 |
RMSE | 4.39 | 3.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Cho, W.; Cha, D.-H.; Won, S.-H.; Lee, J.-R. Sensitivity of Typhoon Forecast to Prescribed Sea Surface Temperature Data. Atmosphere 2023, 14, 72. https://doi.org/10.3390/atmos14010072
Park J, Cho W, Cha D-H, Won S-H, Lee J-R. Sensitivity of Typhoon Forecast to Prescribed Sea Surface Temperature Data. Atmosphere. 2023; 14(1):72. https://doi.org/10.3390/atmos14010072
Chicago/Turabian StylePark, Jinyoung, Woojin Cho, Dong-Hyun Cha, Seong-Hee Won, and Jung-Rim Lee. 2023. "Sensitivity of Typhoon Forecast to Prescribed Sea Surface Temperature Data" Atmosphere 14, no. 1: 72. https://doi.org/10.3390/atmos14010072
APA StylePark, J., Cho, W., Cha, D. -H., Won, S. -H., & Lee, J. -R. (2023). Sensitivity of Typhoon Forecast to Prescribed Sea Surface Temperature Data. Atmosphere, 14(1), 72. https://doi.org/10.3390/atmos14010072