A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction
Abstract
:1. Introduction
- Physical forecasting method
- Time-series method
- Artificial Intelligence method
- Hybrid methods
2. Methods
2.1. ConvLSTM Model
2.2. Dual-Attention Mechanisms
2.2.1. Channel Attention
2.2.2. Spatial Attention
2.3. DACLSTM Model
3. Data and Experiment Design
3.1. ERA5 Hourly Data on Single Levels from 1959-to-Present Dataset
3.2. CMA_ 3km Dataset
3.3. Data Pre-Processing
3.4. Experimental Design
4. Results
4.1. Hyperparametric Analiysis
4.2. Experimental Results Analysis
- (1)
- The performance metrics of the DACLSTM model with the introduction of the dual-attention mechanism outperform the ConvLSTM and FC_LSTM models compared to the traditional single model. For example, in Table 7, the six-hour lead time RMSE of the proposed model’s 10 m wind speed on the test set (January to February 2022) is consistently smaller than that of the ConvLSTM and LSTM; furthermore, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11 also show that the proposed model has a lower regional average RMSE than the other two models for each hour of 10 m wind speed prediction for different forecast validity.
- (2)
- The forecasting ability of each model decreases as the forecast time increases, but the DACLSTM model maintains a better forecasting ability. For example, in Figure 12, the DACLSTM model’s 10 m wind speed prediction is most consistent with ERA5 for each forecast period, while the ConvLSTM model and FC_LSTM model move in the other two directions.
- (3)
- Compared with the GRAPES_3KM numerical forecast of 10 m wind speed, the DACLSTM model can forecast the approximate distribution of wind speed fallout, and the numerical magnitude is also close to that of ERA5. For example, as shown in Figure 12, the 10 m wind speed forecasted by the DACLSTM model can basically agree with ERA5 in 1–2 h, while GRAPES_Meso3K forecasts higher values in the middle compared to the proposed model, which does not agree with ERA5. Within 2–6 h, ERA5 shows uniform wind speeds (2–4 m/s), and the proposed model accurately forecasts the mean value of 10 m wind speed of ERA5, while GRAPES_Meso3km still has higher values in the middle.
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Murshed, M.; Ahmed, Z.; Alam, M.S.; Mahmood, H.; Rehman, A.; Dagar, V. Reinvigorating the role of clean energy transition for achieving a low-carbon economy: Evidence from Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 67689–67710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Peng, X.; Liu, Z.; Jiang, D. A review of multiphase energy conversion in wind power generation. Renew. Sustain. Energy Rev. 2021, 147, 111172. [Google Scholar] [CrossRef]
- Fugui, D.; Li, W. Research on the coupling coordination degree of “upstream-midstream-downstream” of China’s wind power industry chain. J. Clean. Prod. 2021, 283, 124633. [Google Scholar]
- Lei, Y. Studies on wind farm integration into power system. Autom. Electr. Power Syst. 2003, 27, 84–89. [Google Scholar]
- Zhang, S.; Wei, J.; Chen, X.; Zhao, Y. China in global wind power development: Role, status and impact. Renew. Sustain. Energy Rev. 2020, 127, 109881. [Google Scholar] [CrossRef]
- Herbert, G.J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, Y.; Chen, S. Wind speed and generated power forecasting in wind farm. Proc. Chin. Soc. Electr. Eng. 2005, 11, 1–5. [Google Scholar]
- Bhaskar, K.; Singh, S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 2012, 3, 306–315. [Google Scholar] [CrossRef]
- Roungkvist, J.S.; Peter Enevoldsen, P. Timescale classification in wind forecasting: A review of the state-of-the-art. J. Forecast. 2020, 39, 757–768. [Google Scholar] [CrossRef]
- Zhu, X.; Genton, M.G. Short-term wind speed forecasting for power system operations. Int. Stat. Rev. 2012, 80, 2–23. [Google Scholar] [CrossRef]
- Nie, Y.; Liang, N.; Wang, J. Ultra-short-term wind-speed bi-forecasting system via artificial intelligence and a double-forecasting scheme. Appl. Energy 2021, 301, 117452. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 2014, 32, 255–270. [Google Scholar] [CrossRef]
- Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. In Proceedings of the North American Power Symposium (NAPS) 2010, Arlington, TX, USA, 26–28 September 2010. [Google Scholar]
- Wu, Y.-K.; Hong, J.-S. A literature review of wind forecasting technology in the world. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 504–509. [Google Scholar]
- Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Yazdaninejadi, A.; Golshannavaz, S. Demand response programs in power systems with energy storage system-coordinated wind energy sources: A security-constrained problem. J. Clean. Prod. 2022, 335, 130342. [Google Scholar] [CrossRef]
- Akhmedovich, M.A.; Fazliddin, A. Current State of Wind Power Industry. Am. J. Eng. Technol. 2020, 2, 32–36. [Google Scholar]
- Skamarock, W.C. Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weather. Rev. 2004, 132, 3019–3032. [Google Scholar] [CrossRef]
- Short, C.J.; Petch, J. Reducing the spin-up of a regional NWP system without data assimilation. Q. J. R. Meteorol. Soc. 2022, 148, 1623–1643. [Google Scholar] [CrossRef]
- Ulmer, F.-G.; Balss, U. Spin-up time research on the weather research and forecasting model for atmospheric delay mitigations of electromagnetic waves. J. Appl. Remote Sens. 2016, 10, 016027. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Balsamo, G.; Bechtold, P.; Beljaars AC, M.; Koehler, M.; Miller, M.J.; Tompkins, A.M. The ECMWF model climate: Recent progress through improved physical parametrizations. Q. J. R. Meteorol. Soc. 2010, 136, 1145–1160. [Google Scholar] [CrossRef] [Green Version]
- Durai, V.R.; Bhowmik, S.K.R. Prediction of Indian summer monsoon in short to medium range time scale with high resolution global forecast system (GFS) T574 and T382. Clim. Dyn. 2014, 42, 1527–1551. [Google Scholar] [CrossRef]
- Chen, D.; Shen, X. Recent Progress on GRAPES Research and Application. J. Appl. Meteorol. Sci. 2006, 17, 773–777. [Google Scholar]
- Wang, J.; Zhou, Q.; Zhang, X. Wind power forecasting based on time series ARMA model. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 199. [Google Scholar]
- Fattah, J.; Ezzine, L.; Aman, Z.; El Moussami, H.; Lachhab, A. Forecasting of demand using ARIMA model. Int. J. Eng. Bus. Manag. 2018, 10, 1847979018808673. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; He, Y.; Chen, H. Wind speed forecast for wind farms based on ARMA-ARCH model. In Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009. [Google Scholar]
- Mitchell, T.M.; Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; Volume 1. [Google Scholar]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Sinha, R.K.; Pandey, R.; Pattnaik, R. Deep learning for computer vision tasks: A review. arXiv 2018, arXiv:1804.03928. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Sun, Q.D.; Jiao, R.L.; Xia, J.J.; Yan, Z.W.; Li, H.C.; Sun, J.H.; Wang, L.Z.; Liang, Z.M. Adjusting Wind Speed Prediction of Numerical Weather Forecast Model Based on Machine Learning Methods. Meteorol. Mon. 2019, 45, 426–436. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Burke, A.; Snook, N.; Gagne, D.J., II; McCorkle, S.; McGovern, A. Calibration of machine learning–based probabilistic hail predictions for operational forecasting. Weather. Forecast. 2020, 35, 149–168. [Google Scholar] [CrossRef]
- Han, N. Machine Learning Correction of Wind, Temperature and Humidity Elements in Beijing-Tianjin-Heibei Region. J. Appl. Meteorol. Sci. 2022, 33, 12. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Liu, Z.; Jiang, P.; Zhang, L.; Niu, X. A combined forecasting model for time series: Application to short-term wind speed forecasting. Appl. Energy 2020, 259, 114137. [Google Scholar] [CrossRef]
- Chen, G.; Tang, B.; Zeng, X.; Zhou, P.; Kang, P.; Long, H. Short-term wind speed forecasting based on long short-term memory and improved BP neural network. Int. J. Electr. Power Energy Syst. 2022, 134, 107365. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; Liu, Y.; Li, W.; Cao, M. A modified framework based on LSTM-FC for wind turbine health status prediction. In Proceedings of the 2020 6th International Conference on Big Data and Information Analytics (BigDIA), Shenzhen, China, 4–6 December 2020. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Ye, Q.; Yuan, S.; Kim, T.-K. Spatial attention deep net with partial PSO for hierarchical hybrid hand pose estimation. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Ma, Z.; Han, W.; Zhao, C.; Zhang, X.; Yang, Y.; Wang, H.; Cao, Y.; Li, Z.; Chen, J.; Jiang, Q.; et al. A case study of evaluating the GRAPES_Meso V5. 0 forecasting performance utilizing observations from South China Sea Experiment 2020 of the “Petrel Project”. Atmos. Res. 2022, 280, 106437. [Google Scholar] [CrossRef]
- Dai, H.; Chen, M.; Wang, W.; Wang, X. The status of wind power development and technical supports in China. Electr. Power 2005, 1, 80–84. [Google Scholar]
- Zhao, D.Q.; Wang, Y.; Han, X.S. Main Environmental Problem of Wind Electric Power Generation Fiel. Environ. Prot. Sci. 2005, 31, 66–67. [Google Scholar]
- Kaselimi, M.; Doulamis, N.; Doulamis, A.; Voulodimos, A.; Pro-topapadakis, E. Bayesian-optimized bidirectional LSTM regression model for non-intrusive load monitoring. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar]
Time Scale | Forecasting Horizon | Applications |
---|---|---|
Ultra-short-term | Minutes to 1 h ahead | Power System Frequency Control |
Turbine Control | ||
Short-term | 1 h to 6 h ahead | Economic Load Dispatch Planning |
Operational Security in Electricity Market | ||
Medium-term | 6 h to 72 h ahead | Day-Ahead Electricity Market |
Economic Dispatch | ||
Electricity Trading | ||
Long-term | 72 h ahead to years ahead | Maintenance Planning |
Feasibility Study for Design of Wind Farm |
Prediction Methods | Method Representation | Compared to the Proposed Model | Reference |
---|---|---|---|
Physical Forecasting Methods | High computing resources | [23] | |
Numerical weather forecast | Low computational efficiency | [24] | |
Poor short-term forecast | [25] | ||
Time-Series Methods | ARMA | Strict data requirements Unstable prediction performance | [26] |
ARIMA | [27] | ||
ARMA-ARCH | [28] | ||
AI Methods | RF | Difficult to reflect spatial and temporal continuity Limited forecasting capability of one single model | [33] |
ConvLSTM | [34] | ||
XGBoost | [36] | ||
Hybrid Methods | FC_LSTM | No concern for attention mechanism | [40] |
Data Description | Configuration |
---|---|
Data type | Gridded |
Projection | Regular latitude–longitude grid |
Horizontal resolution | 0.25° × 0.25° |
Temporal coverage | 1959 to present |
File format | GRIB |
Parameter Type | Parameter Configuration |
---|---|
Model name | GRAPES_Meso 3 km (v5.0) |
Area of forecast | 70° to 145° E, 10° to 60.1° N |
Horizontal layers | 50 (10 hPa) |
Grid points | 2501 × 1601 |
Step size of model integration | 30 s |
Boundary conditions | Global model forecast results |
Forecast efficiency | 36 h |
The Mean Value of 3 Experiments | ||||
---|---|---|---|---|
40 | 80 | 120 | 150 | |
Loss | 0.00475 | 0.003 | 0.0023 | 0.0023 |
Optimizer | Layer | Activation | Loss | |
---|---|---|---|---|
120 | Adadelta | ConvLSTM | Tanh | 0.0023 |
Chanel Attention | Relu + Sigmod | |||
Spatical Attention | Sigmod | |||
Dense | Relu | |||
Adam | ConvLSTM | Tanh | 0.0027 | |
Chanel Attention | Relu + Sigmod | |||
Spatical Attention | Sigmod | |||
Dense | Relu | |||
adagrad | ConvLSTM | Tanh | 0.0025 | |
Chanel Attention | Relu + Sigmod | |||
Spatical Attention | Sigmod | |||
Dense | Relu |
Forecast Validity | DACLSTM | ConvLSTM | FC_LSTM |
---|---|---|---|
One-hour | 0.7464 | 0.8952 | 0.7733 |
Two-hour | 0.8408 | 0.9971 | 0.8873 |
Three-hour | 0.9941 | 1.1505 | 1.0656 |
Four-hour | 1.1535 | 1.3158 | 1.2510 |
Five-hour | 1.2827 | 1.3715 | 1.4512 |
Six-hour | 1.3951 | 1.4429 | 1.6054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Yang, H.; Zhou, S.; Chen, J.; Chen, M. A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction. Atmosphere 2023, 14, 71. https://doi.org/10.3390/atmos14010071
He J, Yang H, Zhou S, Chen J, Chen M. A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction. Atmosphere. 2023; 14(1):71. https://doi.org/10.3390/atmos14010071
Chicago/Turabian StyleHe, Jinhui, Hao Yang, Shijie Zhou, Jing Chen, and Min Chen. 2023. "A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction" Atmosphere 14, no. 1: 71. https://doi.org/10.3390/atmos14010071
APA StyleHe, J., Yang, H., Zhou, S., Chen, J., & Chen, M. (2023). A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction. Atmosphere, 14(1), 71. https://doi.org/10.3390/atmos14010071