Classification Analysis of Southwest Pacific Tropical Cyclone Intensity Changes Prior to Landfall
Abstract
:1. Introduction
2. Data
3. Method
4. Results and Discussion
4.1. Summary Statistics of Australia mainland and SWPO Island Landfall
4.2. Random Forest Model Outcome
4.2.1. Australia Mainland TC Landfall Classification Analysis
4.2.2. SWPO Island Landfall Classification Analysis
4.3. Addressing False Alarms and False Negatives
4.4. Possible Improvement in the Future Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramsay, H.A.; Leslie, L.M.; Lamb, P.J.; Richman, M.B.; Leplastrier, M. Interannual variability of tropical cyclones in the Australian region: Role of large-scale environment. J. Clim. 2008, 21, 1083–1103. [Google Scholar] [CrossRef]
- Dare, R.A.; Davidson, N. Characteristics of tropical cyclones in the Australian region. Mon. Weather Rev. 2004, 132, 3049–3065. [Google Scholar] [CrossRef]
- Magee, A.D.; Verdon-Kidd, D.C.; Kiem, A.S.; Royle, S.A. Tropical cyclone perceptions, impacts and adaptation in the Southwest Pacific: An urban perspective from Fiji, Vanuatu and Tonga. Nat. Hazards Earth Syst. Sci. 2016, 16, 1091–1105. [Google Scholar] [CrossRef] [Green Version]
- Barnett, J. Adapting to climate change in Pacific Island countries: The problem of uncertainty. World Dev. 2001, 29, 977–993. [Google Scholar] [CrossRef] [Green Version]
- Connell, J. Islands at Risk? Environments, Economies and Contemporary Change; Edward Elgar Publishing: Cheltenham, UK, 2013. [Google Scholar]
- Goulding, W.; Moss, P.; McAlpine, C. Cascading effects of cyclones on the biodiversity of Southwest Pacific islands. Biol. Conserv. 2016, 193, 143–152. [Google Scholar] [CrossRef]
- Leroux, M.-D.; Wood, K.; Elsberry, R.L.; Cayanan, E.O.; Hendricks, E.; Kucas, M.; Otto, P.; Rogers, R.; Sampson, B.; Yu, Z. Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Trop. Cyclone Res. Rev. 2018, 7, 85–105. [Google Scholar]
- Rappaport, E.N.; Franklin, J.L.; Schumacher, A.B.; DeMaria, M.; Shay, L.K.; Gibney, E.J. Tropical cyclone intensity change before US Gulf Coast landfall. Weather Forecast. 2010, 25, 1380–1396. [Google Scholar] [CrossRef]
- Emanuel, K.; DesAutels, C.; Holloway, C.; Korty, R. Environmental control of tropical cyclone intensity. J. Atmos. Sci. 2004, 61, 843–858. [Google Scholar] [CrossRef]
- Moon, I.-J.; Kwon, S.J. Impact of upper-ocean thermal structure on the intensity of Korean peninsular landfall typhoons. Prog. Oceanogr. 2012, 105, 61–66. [Google Scholar] [CrossRef]
- Cubukcu, N.; Pfeffer, R.; Dietrich, D. Simulation of the effects of bathymetry and land–sea contrasts on hurricane development using a coupled ocean–atmosphere model. J. Atmos. Sci. 2000, 57, 481–492. [Google Scholar] [CrossRef]
- Malherbe, J.; Engelbrecht, F.A.; Landman, W. Projected changes in tropical cyclone climatology and landfall in the Southwest Indian Ocean region under enhanced anthropogenic forcing. Clim. Dyn. 2013, 40, 2867–2886. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Villarini, G.; Vecchi, G.A.; Zhao, M.; Walsh, K.; Navarra, A. Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Clim. 2014, 27, 4642–4654. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, H.A.; Leslie, L.M. The effects of complex terrain on severe landfalling Tropical Cyclone Larry (2006) over northeast Australia. Mon. Weather Rev. 2008, 136, 4334–4354. [Google Scholar] [CrossRef]
- Chu, P.-S. Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Clim. 2002, 15, 2678–2689. [Google Scholar] [CrossRef]
- Chan, J.C.; Liang, X. Convective asymmetries associated with tropical cyclone landfall. Part I: F-plane simulations. J. Atmos. Sci. 2003, 60, 1560–1576. [Google Scholar] [CrossRef]
- Yonekura; Hall, T.M. ENSO effect on East Asian tropical cyclone landfall via changes in tracks and genesis in a statistical model. J. Appl. Meteorol. Climatol. 2014, 53, 406–420. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.-J.; Zhang, D.-L.; Huang, H.-L. A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci. 2008, 65, 3095–3115. [Google Scholar] [CrossRef] [Green Version]
- Yaukey, P. Wind speed changes of North Atlantic tropical cyclones preceding landfall. J. Appl. Meteorol. Climatol. 2011, 50, 1913–1921. [Google Scholar] [CrossRef]
- Kaplan; De Maria, M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteorol. Climatol. 1995, 34, 2499–2512. [Google Scholar] [CrossRef]
- Chan, J.C.; Liu, K.; Ching, S.E.; Lai, E.S. Asymmetric distribution of convection associated with tropical cyclones making landfall along the South China coast. Mon. Weather Rev. 2004, 132, 2410–2420. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Lu, X.; Chen, Y.D. Landfalling tropical cyclones activities in the south China: Intensifying or weakening? Int. J. Climatol. 2012, 32, 1815–1824. [Google Scholar] [CrossRef]
- Wu, C.-C. Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Weather Rev. 2001, 129, 1533–1549. [Google Scholar] [CrossRef]
- Kimball, S.K. A modeling study of hurricane landfall in a dry environment. Mon. Weather Rev. 2006, 134, 1901–1918. [Google Scholar] [CrossRef]
- Khain, A.; Lynn, B.; Dudhia, J. Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci. 2010, 67, 365–384. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.R.; Zhang, H.; McFarquhar, G.M.; Saleeby, S.M. Should we consider polluting hurricanes to reduce their intensity? J. Weather. Modif. 2007, 39, 70–73. [Google Scholar]
- Dunion, J.P.; Velden, C. The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Am. Meteorol. Soc. 2004, 85, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci. 1989, 46, 3431–3456. [Google Scholar] [CrossRef]
- Powell, M.D. Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Weather Rev. 1990, 118, 918–938. [Google Scholar] [CrossRef]
- Shu; Wu, L. Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett. 2009, 36, L09809. [Google Scholar]
- Krishnamurti, T.; Sanjay, J.; Vijaya Kumar, T.; O’Shay, A.J.; Pasch, R.J. On the weakening of Hurricane Lili, October 2002. Tellus A Dyn. Meteorol. Oceanogr. 2005, 57, 65–83. [Google Scholar] [CrossRef]
- Shen, W.; Ginis, I. The impact of ocean coupling on hurricanes during landfall. Geophys. Res. Lett. 2001, 28, 2839–2842. [Google Scholar] [CrossRef] [Green Version]
- Lowag, A.; Black, M.L.; Eastin, M.D. Structural and intensity changes of Hurricane Bret (1999). Part I: Environmental influences. Mon. Weather Rev. 2008, 136, 4320–4333. [Google Scholar] [CrossRef]
- Konrad, C.E. Diurnal variations in the landfall times of tropical cyclones over the eastern United States. Mon. Weather Rev. 2001, 129, 2627–2631. [Google Scholar] [CrossRef]
- Cresswell, G.; Badcock, K. Tidal mixing near the Kimberley coast of NW Australia. Mar. Freshw. Res. 2000, 51, 641–646. [Google Scholar] [CrossRef]
- Pu, Z.; Li, X.; Velden, C.S.; Aberson, S.D.; Liu, W.T. The impact of aircraft dropsonde and satellite wind data on numerical simulations of two landfalling tropical storms during the tropical cloud systems and processes experiment. Weather Forecast. 2008, 23, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Shi, D.; Zhang, W.; Huang, C. A prediction scheme for the frequency of summer tropical cyclone landfalling over China based on data mining methods. Meteorol. Appl. 2016, 23, 587–593. [Google Scholar] [CrossRef]
- Song, T.; Li, Y.; Meng, F.; Xie, P.; Xu, D. A novel deep learning model by Bigru with attention mechanism for tropical cyclone track prediction in the Northwest Pacific. J. Appl. Meteorol. Climatol. 2022, 61, 3–12. [Google Scholar]
- Xu, W.; Balaguru, K.; August, A.; Lalo, N.; Hodas, N.; DeMaria, M.; Judi, D. Deep learning experiments for tropical cyclone intensity forecasts. Weather Forecast. 2021, 36, 1453–1470. [Google Scholar]
- Wang, X.; Wang, W.; Yan, B. Tropical cyclone intensity change prediction based on surrounding environmental conditions with deep learning. Water 2020, 12, 2685. [Google Scholar] [CrossRef]
- Tan, J.; Yang, Q.; Hu, J.; Huang, Q.; Chen, S. Tropical Cyclone Intensity Estimation Using Himawari-8 Satellite Cloud Products and Deep Learning. Remote Sens. 2022, 14, 812. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Shi, L.; Wang, B.; Du, Z.; Zhang, F.; Liu, R. A neural network framework for fine-grained tropical cyclone intensity prediction. Knowl. Based Syst. 2022, 241, 108195. [Google Scholar] [CrossRef]
- Sheets, R.C. The National Hurricane Center—Past, present, and future. Weather Forecast. 1990, 5, 185–232. [Google Scholar] [CrossRef]
- Grijalva, C.G.; Roumie, C.L.; Murff, H.J.; Hung, A.M.; Beck, C.; Liu, X.; Griffin, M.R.; Greevy, R.A., Jr. The role of matching when adjusting for baseline differences in the outcome variable of comparative effectiveness studies. J. Comp. Eff. Res. 2015, 4, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Asaro, E.D.; Emanuel, K.A.; Liu, H.; Zedler, S.E. Dynamic potential intensity: An improved representation of the ocean’s impact on tropical cyclones. Geophys. Res. Lett. 2015, 42, 6739–6746. [Google Scholar] [CrossRef] [Green Version]
- Elsner, J.B.; Tsonis, A.; Jagger, T. High-frequency variability in hurricane power dissipation and its relationship to global temperature. Bull. Am. Meteorol. Soc. 2006, 87, 763–768. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 2007, 450, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Tuleya, R.E.; Ginis, I. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Clim. 2000, 13, 109–121. [Google Scholar] [CrossRef]
- Hill, K.A.; Lackmann, G. The impact of future climate change on TC intensity and structure: A downscaling approach. J. Clim. 2011, 24, 4644–4661. [Google Scholar] [CrossRef]
- Bender, M.A.; Tuleya, R.E.; Kurihara, Y. A numerical study of the effect of island terrain on tropical cyclones. Mon. Weather Rev. 1987, 115, 130–155. [Google Scholar] [CrossRef]
- Tuleya, R.E.; Bender, M.; Knutson, T.R.; Sirutis, J.J.; Thomas, B.; Ginis, I. Impact of upper-tropospheric temperature anomalies and vertical wind shear on tropical cyclone evolution using an idealized version of the operational GFDL hurricane model. J. Atmos. Sci. 2016, 73, 3803–3820. [Google Scholar] [CrossRef]
- Done, J.M.; Lackmann, G.M.; Prein, A.F. The response of tropical cyclone intensity to changes in environmental temperature. Weather Clim. Dyn. 2022, 3, 693–711. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V. The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Geisser, S. The predictive sample reuse method with applications. J. Am. Stat. Assoc. 1975, 70, 320–328. [Google Scholar] [CrossRef]
- Schaffer, C. Selecting a classification method by cross-validation. Mach. Learn. 1993, 13, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Cawley, G.C.; Talbot, N.L. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognit. 2003, 36, 2585–2592. [Google Scholar] [CrossRef]
- Elisseeff, A.; Pontil, M. Leave-one-out error and stability of learning algorithms with applications. NATO Sci. Ser. Sub Ser. III Comput. Syst. Sci. 2003, 190, 111–130. [Google Scholar]
- Kim, J.-H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 2009, 53, 3735–3745. [Google Scholar] [CrossRef]
- Cieslak, D.A.; Chawla, N. Learning decision trees for unbalanced data. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Xie, J.; Qiu, Z. The effect of imbalanced data sets on LDA: A theoretical and empirical analysis. Pattern Recognit. 2007, 40, 557–562. [Google Scholar] [CrossRef]
- Batuwita, R.; Palade, V. Class imbalance learning methods for support vector machines. In Imbalanced Learning: Foundations, Algorithms, And applications; Wiley: Hoboken, NJ, USA, 2013; pp. 83–99. [Google Scholar]
- Nguyen, G.H.; Bouzerdoum, A.; Phung, S.L. Learning pattern classification tasks with imbalanced data sets. In Pattern recognition; InTech: Rijeka, Croatia, 2009; pp. 193–208. [Google Scholar]
- Bao-Liang, L.; Xiao-Lin, W.; Yang, Y.; Hai, Z. Learning from imbalanced data sets with a Min-Max modular support vector machine. Front. Electr. Electron. Eng. China 2011, 6, 56–71. [Google Scholar] [CrossRef]
- García, V.; Sánchez, J.S.; Mollineda, R.A. On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 2012, 25, 13–21. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2014, 28, 92–122. [Google Scholar] [CrossRef]
- Han, H.; Lee, S.; Im, J.; Kim, M.; Lee, M.-I.; Ahn, M.H.; Chung, S.-R. Detection of convective initiation using Meteorological Imager onboard Communication, Ocean, and Meteorological Satellite based on machine learning approaches. Remote Sens. 2015, 7, 9184–9204. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, D.; Nakano, M.; Sugiyama, D.; Uchida, S. Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model. Prog. Earth Planet. Sci. 2018, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Haberlie, A.M.; Ashley, W.S. A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part I: Segmentation and classification. J. Appl. Meteorol. Climatol. 2018, 57, 1575–1598. [Google Scholar] [CrossRef]
- Zheng, A. Evaluating Machine Learning Models: A Beginner’s Guide to Key Concepts and Pitfalls; O’Reilly Media: Sebastopol, CA, USA, 2015. [Google Scholar]
- Lalkhen, A.G.; McCluskey, A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 221–223. [Google Scholar] [CrossRef] [Green Version]
- Chand, S.S.; Walsh, K. Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Clim. 2009, 22, 3877–3893. [Google Scholar] [CrossRef]
- Diamond, H.J.; Lorrey, A.; Renwick, J. A southwest Pacific tropical cyclone climatology and linkages to the El Niño–Southern Oscillation. J. Clim. 2013, 26, 3–25. [Google Scholar] [CrossRef]
- Sinclair, M.R. Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Weather Rev. 2002, 130, 590–609. [Google Scholar] [CrossRef]
- Vincent, E.M.; Lengaigne, M.; Menkes, C.E.; Jourdain, N.C.; Marchesiello, P.; Madec, G. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim. Dyn. 2011, 36, 1881–1896. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.-S.; Murakami, H. Climate Variability and Tropical Cyclone Activity; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Jaffrés, J.B. Mixed layer depth seasonality within the Coral Sea Based on Argo Data. PLoS ONE 2013, 8, e60985. [Google Scholar] [CrossRef]
- Ramsay, H.A.; Camargo, S.J.; Kim, D. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim. Dyn. 2012, 39, 897–917. [Google Scholar] [CrossRef] [Green Version]
- McBride, J.; Keenan, T. Climatology of tropical cyclone genesis in the Australian region. J. Climatol. 1982, 2, 13–33. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y. A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Weather Forecast. 2015, 30, 692–701. [Google Scholar] [CrossRef]
- Green, B.W.; Zhang, F. Sensitivity of tropical cyclone simulations to parametric uncertainties in air–sea fluxes and implications for parameter estimation. Mon. Weather Rev. 2014, 142, 2290–2308. [Google Scholar] [CrossRef]
- Donlon, C.; Minnett, P.; Gentemann, C.; Nightingale, T.; Barton, I.; Ward, B.; Murray, M. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Wurl, O.; Wurl, E.; Miller, L.; Johnson, K.; Vagle, S. Formation and global distribution of sea-surface microlayers. Biogeosciences 2011, 8, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Saunders, P.M. The temperature at the ocean-air interface. J. Atmos. Sci. 1967, 24, 269–273. [Google Scholar] [CrossRef]
- Ali, M.; Kashyap, T.; Nagamani, P. Use of sea surface temperature for cyclone intensity prediction needs a relook. EOS Trans. Am. Geophys. Union 2013, 94, 177. [Google Scholar] [CrossRef]
- Jyothi, L.; Joseph, S. Surface and Sub-surface Ocean Response to Tropical Cyclone Phailin: Role of Pre-existing Oceanic Features. J. Geophys. Res. Ocean. 2019, 124, 6515–6530. [Google Scholar] [CrossRef]
- Katsura, S.; Oka, E.; Sato, K. Formation mechanism of barrier layer in the subtropical Pacific. J. Phys. Oceanogr. 2015, 45, 2790–2805. [Google Scholar] [CrossRef]
- Zhao, B.; Fedorov, A. The seesaw response of the intertropical and South Pacific convergence zones to hemispherically asymmetric thermal forcing. Clim. Dyn. 2020, 54, 1639–1653. [Google Scholar] [CrossRef]
- Noonan, J.A.; Smith, R. Sea-breeze circulations over Cape York Peninsula and the generation of Gulf of Carpentaria cloud line disturbances. J. Atmos. Sci. 1986, 43, 1679–1693. [Google Scholar] [CrossRef]
- Mackey, B.; Nix, H.; Hitchcock, P. The Natural Heritage Significance of Cape York Peninsula; Environmental Protection Agency: Brisbane City, QLD, Australia, 2001. [Google Scholar]
- Klint, L.M.; Wong, E.; Jiang, M.; Delacy, T.; Harrison, D.; Dominey-Howes, D. Climate change adaptation in the Pacific Island tourism sector: Analysing the policy environment in Vanuatu. Curr. Issues Tour. 2012, 15, 247–274. [Google Scholar] [CrossRef] [Green Version]
- Pelling, M.; Uitto, J. Small island developing states: Natural disaster vulnerability and global change. Glob. Environ. Change Part B Environ. Hazards 2001, 3, 49–62. [Google Scholar] [CrossRef]
- Hassim, M.E.; Walsh, K. Tropical cyclone trends in the Australian region. Geochem. Geophys. Geosystems 2008, 9, Q07V07. [Google Scholar] [CrossRef] [Green Version]
- Peirano, C.; Corbosiero, K.; Tang, B. Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett. 2016, 43, 5509–5515. [Google Scholar] [CrossRef]
Variables | Spatial Resolution | Sources |
---|---|---|
Latitude | Point | SPEArTC |
Longitude | Point | SPEArTC |
Initial maximum sustained wind speed | Point | SPEArTC |
Sea surface skin temperature (SkT) | 2.5° × 2.5° | NCEP/NCAR reanalysis |
Ocean heat content at 700-meter depth (OHC) | 1.0° × 1.0° | ORAS5 |
Air temperature at 200 hPa (Airtemp) | 2.5° × 2.5° | NCEP/NCAR reanalysis |
Specific humidity 300 hPa (Sphum) | 2.5° × 2.5° | NCEP/NCAR reanalysis |
Vertical wind velocity (VW) | 2.5° × 2.5° | NCEP/NCAR reanalysis |
Vertical wind shear (VWS) | 2.5° × 2.5° | NCEP/NCAR reanalysis |
Sea salt aerosol extinction optical depth (SSAOD) | 0.5° × 0.625° | MERRA-2 reanalysis |
Actual | |||
Weakening (0) | Intensifying (1) | ||
Prediction | Weakening (0) | TN | FN |
Intensifying (1) | FP | TP |
Latitude | Longitude | Initial Intensity | VW | SSAOD | SH_300 | VWS | SkT | AT_200 | OHC_700 | |
---|---|---|---|---|---|---|---|---|---|---|
Latitude | 1 | 1.00 × 10−13 | 0.1 | 0.61 | 0.26 | 0.46 | 0.1 | 7.00 × 10−6 | 0 | 0.08 |
Longitude | 1.00 × 10−3 | 1 | 0.01 | 0.85 | 0.19 | 0.55 | 0.57 | 2.00 × 10−9 | 0.17 | 0 |
Initial intensity | 1.00 × 10−1 | 0.01 | 1 | 0.79 | 0 | 0.04 | 0.74 | 2.00 × 10−3 | 0.23 | 0.02 |
VW | 6.00 × 10−1 | 0.85 | 0.79 | 1 | 0.56 | 0.39 | 0.58 | 8.00 × 10−1 | 0.71 | 0.81 |
SSAOD | 3.00 × 10−1 | 0.19 | 0 | 0.56 | 1 | 0.05 | 0.49 | 7.00 × 10−1 | 0.01 | 0.45 |
SH_300 | 5.00 × 10−1 | 0.55 | 0.04 | 0.39 | 0.05 | 1 | 0.52 | 4.00 × 10−1 | 0 | 0.48 |
VWS | 1.00 × 10−1 | 0.57 | 0.74 | 0.58 | 0.49 | 0.52 | 1 | 5.00 × 10−1 | 0.56 | 0.16 |
SkT | 7.00 × 10−6 | 0 | 0 | 0.78 | 0.7 | 0.38 | 0.5 | 1 | 0.6 | 0 |
AT_200 | 6.00 × 10−4 | 0.17 | 0.23 | 0.71 | 0.01 | 0 | 0.56 | 0.6 | 1 | 1 |
OHC_700 | 8.00 × 10−2 | 0 | 0.02 | 0.81 | 0.45 | 0.48 | 0.16 | 0 | 1 | 1 |
Latitude | Longitude | Initial Intensity | VW | SSAOD | SH_300 | VWS | SkT | AT_200 | OHC_700 | |
---|---|---|---|---|---|---|---|---|---|---|
Latitude | 1 | 0.04 | 0.02 | 0.78 | 0.00 | 0.08 | 0 | 0.14 | 1 × 10−15 | 0.42 |
Longitude | 0.04 | 1 | 0.28 | 0.29 | 0.05 | 0.26 | 0.31 | 0.45 | 1 × 10−3 | 0.00 |
Initial intensity | 0.02 | 0.28 | 1 | 0.00 | 0.08 | 0.79 | 0.18 | 0.13 | 7 × 10−3 | 0.28 |
VW | 0.78 | 0.29 | 2 × 10−7 | 1 | 0.05 | 0.79 | 0.45 | 0.34 | 8 × 10−2 | 0.27 |
SSAOD | 0.00 | 0.05 | 8 × 10−2 | 0.05 | 1 | 0.14 | 0.00 | 0.39 | 1 × 10−2 | 0.03 |
SH_300 | 0.08 | 0.26 | 8 × 10−1 | 0.79 | 0.14 | 1 | 0.03 | 0.17 | 5 × 10−1 | 0.32 |
VWS | 0.00 | 0.31 | 2 × 10−1 | 0.45 | 0.00 | 0.03 | 1 | 0.30 | 0 | 0.34 |
SkT | 0.14 | 0.45 | 1 × 10−1 | 0.34 | 0.39 | 0.17 | 0.30 | 1 | 0.04 | 0.90 |
AT_200 | 0.00 | 0.00 | 7 × 10−3 | 0.08 | 0.01 | 0.46 | 0.00 | 0.04 | 1 | 0.94 |
OHC_700 | 0.42 | 0.00 | 3 × 10−1 | 0.27 | 0.03 | 0.32 | 0.34 | 0.90 | 0.94 | 1 |
Reference | |||
Weakening | Intensifying | ||
Prediction | Weakening | 7 | 3 |
Intensifying | 1 | 5 |
Reference | |||
Prediction | Weakening | Intensifying | |
Weakening | 9 | 2 | |
Intensifying | 1 | 8 |
Landfall Location | Name | Landfall Date and Time | Latitude | Longitude | Vmax (ms−1) | Actual Class | Predicted Class |
---|---|---|---|---|---|---|---|
Island | VELI | 8 February 1987 0:00 | −14.33 | 166.17 | 15 | 0 | 1 |
BOLA | 28 February 1988 12:00 | −16.64 | 168.25 | 38 | 1 | 0 | |
VANIA | 15 November 1994 0:00 | −15.36 | 168.24 | 25 | 1 | 0 | |
Mainland | GILLIAN | 10 March 2014 6:00 | −14 | 141.4 | 15 | 0 | 1 |
DOMINIC | 7 April 1982 6:00 | −14.6 | 141.4 | 34 | 1 | 0 | |
ETHEL | 9 March 1996 12:00 | −12.8 | 141.33 | 21 | 1 | 0 | |
TESSI | 2 April 2000 18:00 | −18.86 | 146.48 | 29 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhowmick, R.; Trepanier, J.C.; Haberlie, A.M. Classification Analysis of Southwest Pacific Tropical Cyclone Intensity Changes Prior to Landfall. Atmosphere 2023, 14, 253. https://doi.org/10.3390/atmos14020253
Bhowmick R, Trepanier JC, Haberlie AM. Classification Analysis of Southwest Pacific Tropical Cyclone Intensity Changes Prior to Landfall. Atmosphere. 2023; 14(2):253. https://doi.org/10.3390/atmos14020253
Chicago/Turabian StyleBhowmick, Rupsa, Jill C. Trepanier, and Alex M. Haberlie. 2023. "Classification Analysis of Southwest Pacific Tropical Cyclone Intensity Changes Prior to Landfall" Atmosphere 14, no. 2: 253. https://doi.org/10.3390/atmos14020253
APA StyleBhowmick, R., Trepanier, J. C., & Haberlie, A. M. (2023). Classification Analysis of Southwest Pacific Tropical Cyclone Intensity Changes Prior to Landfall. Atmosphere, 14(2), 253. https://doi.org/10.3390/atmos14020253