Study on Optimal Sampling Analysis of Soil Moisture at Field Scale for Remote Sensing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Method
2.2. Experimental Data
3. Results and Discussion
3.1. Effectiveness Analysis of the Random Combination Method
3.2. Analysis of the Reasonable Sampling Number Results at Different Scales
3.3. Relationship between the Coefficient of Variation (CV) and the Reasonable Number of Samples (Rn)
3.4. Regional Scale () and Reasonable Number of Samples (Rn)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renhua, Z.; Xiaomin, S.; Hongbo, S.; Xinzhai, T.; Zhilin, Z. Remote sensing and scale transfering of levity parameters on earth surface. Remote Sens. Land Resour. 1999, 41, 51–58. [Google Scholar] [CrossRef]
- Liangyun, L. Simulation and correction of spatial scaling effects for leaf area index. J. Remote Sens. 2014, 18, 1158–1168. [Google Scholar] [CrossRef]
- Jacobs, J.M.; Mohanty, B.P.; Hsu, E.-C.; Miller, D. SMEX02: Field scale variability, time stability and similarity of soil moisture. Remote Sens. Environ. 2004, 92, 436–446. [Google Scholar] [CrossRef]
- Mingzhu, X.; Guoce, X.; Yuting, C.; Zhiqiang, M.; Peng, L.; Binhua, Z.; Peng, S.; Lie, X. Soil moisture estimation and its influencing factors based on temporal stability on a semiarid sloped forestland. Front. Earth Sci. 2021, 9, 629826. [Google Scholar] [CrossRef]
- Georgakakos, K.P.; Baumer, O.W. Measurement and utilization of on-site soil moisture data. J. Hydrol. 1996, 184, 131–152. [Google Scholar] [CrossRef]
- Zhao, W.; Cui, Z.; Zhou, C. Spatiotemporal variability of soil–water content at different depths in fields mulched with gravel for different planting years. J. Hydrol. 2020, 590, 125–253. [Google Scholar] [CrossRef]
- Huang, J.; Desai, A.R.; Zhu, J.; Hartemink, A.E.; Stoy, P.C.; Ii, S.P.L.; Bogena, H.R.; Zhang, Y.; Zhang, Z.; Arriaga, F. Retrieving heterogeneous surface soil moisture at 100 m across the globe via fusion of remote sensing and land surface parameters. Front. Water 2020, 2, 578367. [Google Scholar] [CrossRef]
- Tingting, J.; Haitang, H.; Chunxia, Q.; Cunjun, L.; Jingping, Z.; Qiaoling, Z.; Cui, B. Spatial variability and Its controlling topographic factors of soil moisture during spring plowing season in black soil hilly region of Northeast China. Res. Soil Water Conserv. 2022, 29, 58–65. [Google Scholar] [CrossRef]
- Guohua, W.; Qianqian, G.; Yulian, H.; Huimin, Z.; Xiafang, Z. Dynamics of soil water content across different landscapes in a typical desert-oasis ecotone. Front. Environ. Sci. 2020, 8, 577406. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Singh, G.; Panda, R.K.; Mohanty, B.P. Spatiotemporal analysis of soil moisture and optimal sampling design for regional-scale soil moisture estimation in a tropical watershed of India. Water Resour. Res. 2019, 55, 2057–2078. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Yu, P.; Tian, A.; Wang, Y.; Xiong, W.; Xu, L. Spatial pattern and temporal stability of root-zone soil moisture during growing season on a larch plantation hillslope in northwest China. Forests 2018, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Rawls, W.J.; Brakensiek, D.L.; Saxtonn, K.E. Estimation of soil water properties. Trans. ASABE 1982, 25, 1316–1320. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; Peng, Y.; Wang, G.; Hu, Y. Improving estimation of soil moisture content using a modified soil thermal inertia model. Remote Sens. 2020, 12, 1719. [Google Scholar] [CrossRef]
- Zhan, Z.; Qin, Q.; Ghulan, A.; Wang, D. NIR-red spectral space based new method for soil moisture monitoring. Sci. China Ser. D Earth Sci. 2007, 50, 283–289. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Shao, M. Using soil surface gray level to determine surface soil water content. Sci. China Earth Sci. 2010, 53, 1527–1532. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y. Research on the method for retrieving soil moisture using thermal inertia model. Sci. China Ser. D 2006, 49, 539–545. [Google Scholar] [CrossRef]
- Shao, L.; Xia, X. Study on remote sensing monitoring model of agricultural drought based on random forest deviation correction. Inmateh-Agric. Eng. 2021, 64, 413–422. [Google Scholar] [CrossRef]
- Rudolf, B.H. Methods of soil analysis agronomy monograph number Part 1, Physical and mineralogical methods. Catena 1988, 15, 99–100. [Google Scholar] [CrossRef]
- Wenying, H.; Yongqin, L. Review of agricultural drought monitoring models. Yunnan Geogr. Environ. Res. 2013, 25, 51–55. [Google Scholar]
- Ying, Z.; Jianli, D.; Peng, Z. Model algorithm of soil moisture retrieval base on microwave remote sensing in arid regions. Arid. Land Geogr. 2011, 34, 671–678. [Google Scholar] [CrossRef]
- Wang, C.; Zuo, Q.; Zhang, R. Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method. J. Hydrol. 2008, 352, 309–321. [Google Scholar] [CrossRef]
- Qiuxia, X.; Jiahui, Z.; Kun, L.; Yunxiao, S.; Linlin, Z. Research and application of flood submerged information precise extraction based on typical remote sensing image fusion method. J. Catastrophology 2017, 32, 183–186. [Google Scholar] [CrossRef]
- Glenn, N.F.; Carr, J.R. The use of geostatistics in relating soil moisture to RADARSAT-1 SAR data obtained over the Great Basin, Nevada, USA. Comput. Geosci. 2003, 29, 577–586. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, N.; Niu, Z.; Raghavan, V.; Song, X. Soil moisture retrieval in farmland using C-band SAR and optical data. Spat. Inf. Res. 2017, 25, 431–438. [Google Scholar] [CrossRef]
- Park, S.J.; van de Giesen, N. Soil–landscape delineation to define spatial sampling domains for hillslope hydrology. J. Hydrol. 2004, 295, 26–46. [Google Scholar] [CrossRef]
- Shukla, M.K. Soil Physics; Taylor and Francis: Abingdon, UK, 2013; p. 478. [Google Scholar]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1977; p. 428. [Google Scholar]
- Warrick, A.W. Soil Water Dynamics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Chunmei, W.; Yulin, Z.; Xiangqin, W.; Juan, L.; Lingling, L.; Miao, L. Ground sampling strategy for surface soil moisture in heterogeneous remote sensing pixels. J. Cent. South Univ. (Sci. Technol.) 2016, 47, 1414–1419. [Google Scholar] [CrossRef]
- Tingting, L.; Xiang, Z.; Zui, T.; Xiaoyu, S.; Jin, W.; Ruoxi, L.; Futai, X. Remote Sensing-Guided Spatial Sampling Strategy over Heterogeneous Surface Ground for Validation of Vegetation Indices Products with Medium and High Spatial Resolution. Remote Sens. 2021, 13, 2674. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z. Horizontal variability of soil water content, evaporation an d throughfall in corn row. Soil Sci. Soc. Am. J. 2020, 84, 31–44. [Google Scholar] [CrossRef]
- Zawadzki, J.; Cieszewski, C.J.; Zasada, M.; Lowe, R.C. Applying geostatistics for investigations of forest ecosystems using remote sensing imagery. Silva Fenn. 2005, 39, 599–617. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Haining, R.; Cao, Z. Sample surveying to estimate the mean of a heterogeneous surface: Reducing the error variance through zoning. Int. J. Geogr. Inf. Sci. 2010, 24, 523–543. [Google Scholar] [CrossRef]
- Saddiq, M.H.; Wierenga, P.J.; Hendrickx, J.M.H.; Hussain, M.Y. Spatial variability of soil water tension in an irrigated soil. Soil Sci. 1985, 140, 126–132. [Google Scholar] [CrossRef]
- Crocker, W. Soil Science. Botanical Gazette 1916, 62, 248. [Google Scholar] [CrossRef]
- McBratney, A.B.; Webster, R. How many observations are needed for regional estimation of soil properties? Soil Sci. 1983, 135, 177–183. [Google Scholar] [CrossRef]
- Chung, C.K.; Chong, S.-K.; Varsa, E.C. Sampling strategies for fertility on a stoy silt loam soil. Commun. Soil Sci. Plant Anal. 1995, 26, 741–763. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.; Han, F.; Reichardt, K.; Tan, J. Watershed scale temporal stability of soil water content. Geoderma 2010, 158, 181–198. [Google Scholar] [CrossRef]
- Lei, G. Temporal Stability and the Spatial Scaling of Soil Moisture in a Small Watershed in the Loess Plateau. Ph.D. Thesis, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Xi’an, China, 2012. [Google Scholar]
- Yuhua, J. Spatio-Temporal Variability of Soil Water Content on a Loessial Slope. Ph.D. Thesis, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Xi’an, China, 2013. [Google Scholar]
- Xuemei, M. Temporal and Spatial Distribution of Soil Water and Its Effect Mechanism on the Loess Hillslope. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Yao, S.; Dapeng, Y.; Jinpu, L.; Qile, C.; Shutao, W. Study on the layout of sample plots for soil investigation. For. Ecol. Sci. 2019, 34, 127–134. [Google Scholar] [CrossRef]
- Santos, E.O.D.J.; Gontijo, I.; Da Silva, M.B.; Partelli, F.L. Sampling design of soil physical properties in a conilon coffee field. Rev. Bras. De Ciência Do Solo 2017, 41, 1–12. [Google Scholar] [CrossRef]
Confidence Level | 90% | 95% | ||
---|---|---|---|---|
Relative error | 5% | 10% | 5% | 10% |
Traditional method | 34 | 9 | 49 | 13 |
Stratified sampling | 18 | 5 | 23 | 7 |
Random combination | 20 | 8 | 25 | 11 |
Scale | σ cm3 cm−3 | µ cm3 cm−3 | CVI | CV |
---|---|---|---|---|
2 m | 0.019 | 0.263 | 0.073 | 0.074 |
0.017 | 0.236 | 0.070 | ||
0.022 | 0.289 | 0.075 | ||
0.019 | 0.254 | 0.076 | ||
10 m | 0.027 | 0.215 | 0.124 | 0.109 |
0.024 | 0.259 | 0.100 | ||
20 m | 0.021 | 0.210 | 0.100 | 0.110 |
0.024 | 0.200 | 0.120 | ||
40 m | 0.037 | 0.208 | 0.178 | 0.197 |
0.050 | 0.231 | 0.216 | ||
80 m | 0.070 | 0.198 | 0.350 | 0.350 |
160 m | 0.182 | 0.234 | 0.778 | 0.778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Gu, X.; Wang, C.; Yang, J.; Lu, Y.; Chen, Z. Study on Optimal Sampling Analysis of Soil Moisture at Field Scale for Remote Sensing Applications. Atmosphere 2023, 14, 149. https://doi.org/10.3390/atmos14010149
Wang C, Gu X, Wang C, Yang J, Lu Y, Chen Z. Study on Optimal Sampling Analysis of Soil Moisture at Field Scale for Remote Sensing Applications. Atmosphere. 2023; 14(1):149. https://doi.org/10.3390/atmos14010149
Chicago/Turabian StyleWang, Chunmei, Xingfa Gu, Chunnuan Wang, Jian Yang, Yang Lu, and Zou Chen. 2023. "Study on Optimal Sampling Analysis of Soil Moisture at Field Scale for Remote Sensing Applications" Atmosphere 14, no. 1: 149. https://doi.org/10.3390/atmos14010149
APA StyleWang, C., Gu, X., Wang, C., Yang, J., Lu, Y., & Chen, Z. (2023). Study on Optimal Sampling Analysis of Soil Moisture at Field Scale for Remote Sensing Applications. Atmosphere, 14(1), 149. https://doi.org/10.3390/atmos14010149