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Abstract: With the rapid development of soil moisture estimation techniques involving remote
sensing technology, the sampling designs used in soil moisture research are very important. To
estimate the rational sample number for measuring near-surface soil moisture (0–20 cm), a random
combination method was used to study the relationship between the average measured soil moisture
contents and the true values at given scales. Compared to classic statistics and stratified sampling,
the random combination method easily obtained precision estimates from a small number of samples.
Moreover, the random combination method was upscaled to further discuss the influence of the
coefficient of variation and study-region scale on the rational sample numbers at different scales
(2, 10, 20, 40, 80, and 160 m). The results showed that the rational sample numbers for measuring near-
surface soil moisture at the 2, 10, 20, 40, 80, and 160 m scales were 2, 5, 5, 8, 20, and 42, respectively,
under the relative error of 10% at the 95% confidence level. The rational sample numbers at different
scales were proportional to the coefficient of variation and the regional scale.

Keywords: remote sensing; sampling; soil moisture

1. Introduction

The concept of regional scale should be considered when performing qualitative and
quantitative soil analyses. Generally, soil moisture studies require large-scale information
to obtain substantive significance [1]. Regional soil moisture, especially the distribution of
surface soil moisture, is an important factor affecting surface runoff, groundwater recharge,
and the feedback relationship between the land surface system and the atmospheric sys-
tem [2,3]. Soil moisture drought is one of the key prerequisites for the development of
extremely high temperatures, whereas atmospheric dynamics control the onset of such
extremes. However, to date, researchers have used only neutron probes, time-domain
reflectometry (TDR), or Earth-boring tools and other instrument equipment to accurately
observe soil moisture in small areas; in addition, the collected data can represent the soil
moisture conditions only in a small range [2,4–11]. With the increasing observation scale
required in experiments, manual measurement methods have difficulty meeting the ex-
perimental requirements [11]. In recent years, with the development and application of
remote sensing technologies, such technologies have become an important way to express
the regional distribution information of soil moisture [2,12–19]. The retrieval of surface soil
moisture conditions from remote sensing data has become an important research topic in
the field of soil sciences.

In the process of retrieving surface-layer soil moisture from remote sensing data, it is
often necessary to establish and to verify various models with as much ground observation
data as possible [2,4,5,11,17,18,20–26]. Due to the spatial variability in surface soil moisture,
and the constraints of human and material resources, the amount of ground-measured data
is often limited [2,22]. Ensuring that the most accurate average soil moisture conditions in
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a specific area can be effectively determined using the fewest possible reasonable sampling
points under a certain error range and confidence level is the first problem to be solved
in remote sensing inversions of surface soil moisture; this issue is of great significance for
ensuring that basic research and production practices can be performed [27].

To date, many scholars have discussed the problem of selecting a reasonable sampling
number when making sampling schemes. At present, traditional statistical methods are the
most widely used and are suitable for simple random sampling. Cochran [28] and Warrick [29]
described such methods in detail. However, traditional statistical methods are limited, in
that the data errors generally conform to a normal distribution, and the sample points are
mutually independent [24]. When the preconditions are violated, the reasonable number of
samples calculated using traditional methods is often inconsistent with the actual needs [23,25].
Stratified sampling is another accurate sampling strategy that has been applied in different
research fields, such as census, environmental analysis, and soil science research. This method
can effectively reduce the number of samples required [26,28–30], but the calculation process
is cumbersome, and there are many restrictions, such as the need for prior data support and a
consideration of the impacts of stratified methods [31]. Although a small number of samples
can be used to represent the mean of the sample area through stable sampling, a large number
of long-time-series ground observation data sets are required [30–34].

In general, the sample number depends mainly on the degree of spatial variations
in the measurement parameters; the higher the degree of variation is, the more samples
are needed. The degree of variation is often characterized by the coefficient of variation.
According to the traditional statistical principle, when the error population is normally
distributed and the samples are mutually independent, the reasonable sample number
is proportional to the square of the coefficient of variation (assuming that the population
variance is approximately equal to the sample variance) under a certain confidence level
and error conditions [23]. In the actual process, the above assumptions are difficult to fully
satisfy [23], so it is necessary to further analyze the relationship between the number of
sampling points and the coefficient of variation. In addition, the relationships among the
regional scale, the number of samples, and the coefficient of variation are also very close.
At the regional scale, it is relatively difficult to obtain the coefficient of variation. Therefore,
it may be more practical to study the relationship between the reasonable sample number
and the regional scale. The reasonable ground sampling method of soil moisture has great
significance for the precise verification of the soil moisture inversion algorithm and the
truth testing of the product [19]. With the launch of high spatial resolution satellites at
home and abroad in recent years, especially the GaoFen series and space-based system
satellites launched by China, there is an urgent need to build an optimal sampling analysis
aiming at the validation and development of high-resolution soil moisture remote sensing
products. In this paper, based on the effectiveness of the random combination method, we
analyzed the reasonable sampling numbers of the surface soil moisture contents at different
scales, and the relationships between the sample number and the coefficient of variation
and between the sample number and the regional scale using the random combination
method, to provide reference methods and a theoretical basis for the inversion of surface
remote sensing data.

2. Materials and Methods
2.1. Analysis Method

The measured soil moisture points can represent a small area by obtaining the average
value over the basic unit; this differs from the “point” concept applied in mathematics.
Based on the actual situation of several existing soil moisture-measuring instruments or
means, in this study, we assumed that the basic unit had a size of 0.4 m × 0.4 m. If a plot
could be divided into m units (the area of each unit must be not greater than the area of
the basic unit), then the soil moisture status of the plot could be understood by placing a
measured point on each unit. The real average soil moisture of the plot could be considered
to be equal to the average soil moisture value among the m measured points. The basic
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idea of applying the random combination method to determine the reasonable sampling
number of surface soil moisture is as follows: first, we randomly selected N points (N = 1,
2, 3 . . . , m) from all measured data, calculated the relative error (RE) between the mean
soil moisture value and the true average soil moisture value within the plot, obtained the
average value of all m measuring points, and calculated all combination numbers s with
respect to specific n values and combination numbers p and q when RE was not greater
than 10% and 5%, respectively. Then, p/s and q/s were set as the confidence levels under
10% and 5% errors, respectively. In this study, the relative errors of 10% and 5% under the
condition of a 95% confidence level were proposed as the benchmark for determining the
reasonable number of sampling points in the plot.

Theoretically, the above method can be used to determine the reasonable sampling point
number in an area of any scale. However, because surface soil moisture is affected by various
factors and rapid changes, remote sensing data should be continuous over time. If the selected
plot area were too large, it would be impossible to obtain soil moisture measurements within
all small-area basic units over a short period of time. Considering that large-scale areas can be
composed of several small-scale areas, it was thus necessary to set a basic scale and to perform
the analysis of reasonable sampling points based on that basic scale. In view of the above
requirements of basic units and remote sensing measurement times, it was obvious that the
basic scale could not be exceedingly large. In contrast, a small basic scale was not conducive to
scale upgrading or amplification. The research of Sadden et al. [35] showed that soil moisture
changes are relatively stable within the field scale range of 4 m× 4 m. Therefore, the basic scale
was set as 2 m× 2 m (hereafter referred to as the 2 m plot or 2 m scale; the other scales were set
similarly to this scale); on the basis of obtaining basic-scale analysis results, the scale expansion
task was then carried out step-by-step. For example, 10 m × 10 m cells could be composed of
25 2 m× 2 m cells, 20 m× 20 m cells could be composed of four 10 m× 10 m cells, 40 m× 40 m
cells could be composed of four 20 m× 20 m cells, 80 m× 80 m cells could be composed of four
40 m× 40 m cells, and 160 m× 160 m cells could be composed of four 80 m× 80 m cells. After
the sampling number was determined at the 2 m scale, at the 10 m scale, random sampling
was carried out in 25 2 m × 2 m cells according to the reasonable sampling number obtained
above. Then, a reasonable sampling number was obtained at the 10 m scale by applying the
random combination method. Subsequently, we analyzed reasonable sample numbers at
higher scales via analogy. The coefficient of variation was obtained as the ratio of the standard
deviation to the mean value; when M soil moisture data points were measured at a certain
scale θ1, θ2 . . . θM, the coefficient of variation CV could be expressed as follows:

CV =

√
1
M ∑M

i=1
(
θi − θ

)2

θ
(1)

θ =
1
M

M

∑
i=1

θi (2)

In soil science [36], CV reflects the variation degree of soil properties, and it is an
important parameter that is used in traditional statistical methods to estimate the reasonable
sample number [29]. In this study, the standard deviation and mean value of the soil
moisture measurements obtained at different scales were calculated to obtain the CV at
each scale; then, the relationships among the CVs at different scales, and the area (scale)
and the number of samples were analyzed.

2.2. Experimental Data

The study area was located in Hengshui city, Hebei Province, in northwestern China
(38◦3′00′′ N, 115◦27′54′′ E). The region is a typical agricultural area, with only a few types
of land cover (bare soils, maize, orchards, and grass areas) and a homogeneous soil texture.
The area has a typical continental monsoon climate characterized by high temperatures
and rainfall in summer, and cold, dry winters [23]. The average annual temperature is
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12.6 ◦C, with an average temperature of minus 4.1 ◦C in the coldest month (January) and
26.8 ◦C in the hottest month (July). The average annual precipitation is 510 mm, 80%
of which falls between June and August. Therefore, the SM content plays an important
role in agricultural production, particularly in summer. To measure the SM content, field
experiments were conducted for 20–21 July 2018. The location of the experimentation area
is shown in Figure 1. Maize, cotton, and peanut are the main crops grown at these sites.
The main soil type is loamy, including approximately 44.6% silt, 17.5% clay, and 37.9%
sand [23].

Figure 1. Location of the experimentation area.

In the first experiment, the effectiveness of the random combination method was
discussed. An area with a scale of 55 m× 55 m was selected in the experiment. According to
the preliminary sampling detection analysis, grid sampling was conducted at 5 m intervals.
Then, the reasonable sampling number was estimated using the random combination
method according to the measured data, and the results were analyzed and compared
with the estimation results obtained through the traditional statistical method [29] and
the stratified sampling method [28] (the calculation methods involved in the traditional
statistics and stratified sampling methods are detailed in the literature and are not described
in this paper).

The second experiment mainly involved the use of a random combination method to
scale-up and to analyze the reasonable surface-soil-moisture sampling numbers at different
scales. Nested cells with different scales of 2, 10, 20, 40, 80, and 160 m were established to
study the reasonable surface-soil-moisture sampling number. The 2 m cells were sampled
using the grid method: each 2 m cell was divided into 25 0.4 m grid cells (basic cells). A
hydro sense portable soil moisture meter (CS620, USA Campbell Scientific Inc., Logan,
UT, USA) was used to measure the volume moisture content of the surface soil (0–20 cm)
at the center of each grid cell. A total of 4 repetitions were set, and the measurement of
each cell took approximately 10 min (using 1 set of instruments). The 10 m scale tests
were conducted on the basis of the analysis results of the reasonable sampling number
at the 2 m scale. Assuming that the reasonable sampling number of 2 m × 2 m cells was
n under the condition of a 95% confidence level and 10% (or 5%) error, first, we divided
the 10 m × 10 m area into 25 2 m × 2 m cells, randomly measured the soil moisture in
each cell n times, and obtained a total of 25 × n soil moisture data points. Similarly, the
reasonable sampling number at the 10 m scale was analyzed according to the above random
combination method. By analogy, the tests at the 20 m, 40 m, 80 m, and 160 m scales were
conducted on the basis of the analysis results obtained at the 10 m, 20 m, 40 m, and 80 m
scales, respectively. The only exceptions were for the 80 m and 160 m scales, where the
analysis was completed only once; the other scales were assessed twice.
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With the expansion of the measurement scale, the number of points to be measured
increased exponentially. To ensure that the measurement time of each scale was as short as
possible, multiple instrument sets were used to complete the “synchronous” measurement
of each scale. Considering the requirements of remote sensing technology and the practical
operation potential, the measurement time at each scale was limited to 30 min.

3. Results and Discussion
3.1. Effectiveness Analysis of the Random Combination Method

For the specific calculation process of traditional statistical methods and stratified
sampling methods, the studies by Cochran [28] and Warrick [29] can be used as references.
In the paper, the stratified sampling was divided into four strata according to the spatial
distribution of soil moisture. The weight coefficient was set as the ratio between the area of
each stratum and the total area. The reasonable sampling numbers of traditional statistical
methods, stratified sampling methods, and random combination methods under different
error and confidence level conditions are shown in Table 1.

Table 1. Reasonable sampling numbers obtained for different methods at certain confidence levels
and error ranges.

Confidence Level 90% 95%

Relative error 5% 10% 5% 10%
Traditional method 34 9 49 13
Stratified sampling 18 5 23 7

Random combination 20 8 25 11

Table 1 shows that under the same confidence level and error conditions, the number
of reasonable samples is highest when using traditional statistical methods. The main
reason for this result is that the test samples are not all mutually independent, and that this
violates the basic assumption of traditional statistics. Therefore, the number of samples
obtained in traditional statistical methods is higher than the number of samples actually
needed [29,37,38].

In this experiment, the stratified sampling method required the fewest samples, re-
quiring only approximately half of the number of samples taken by the traditional method;
this finding was consistent with the research conclusion of Park et al. [26]. In conclusion,
stratified sampling is more effective than traditional sampling in reducing the number of
required samples under certain accuracy requirements. Interestingly, the sampling results
of the random combination and stratified sampling methods were very similar; especially
when the accuracy requirements were high (when the relative error was within 5%), the
relative error of the random combination method and stratified sampling method was
approximately 10%. Then, the available random combination method could be used to
obtain the estimations at the same precision with a relatively small number of samples.
Moreover, the random combination calculation method is simple and is not limited by
the layering method or by the independent status of the samples. This method is thus a
relatively feasible sampling method.

3.2. Analysis of the Reasonable Sampling Number Results at Different Scales

The relationship between the sampling number and the confidence level is shown in
Figure 2 when the REs of the surface soil moisture at the 2 m scale are 5% and 10%. As
the number of samples increased, the confidence level gradually increased. At the same
confidence level, an accuracy improvement (a decrease in the relative error) resulted in
an increased sample number. The error line in Figure 2 shows that the results of four
repetitions were nearly the same. In addition, the deviation between the confidence level
and the average value was slightly larger (5.7%) when the number of samples was 1 at the
10% error level, and the remaining deviation was almost zero. These results shows that
the changes in the confidence level with a change in the sampling number were relatively
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stable in the study area, and that the results were thus reliable. Under the 95% confidence
level, when the numbers of samples was no less than 2 and 7, the error requirements of
10% and 5% could be met, respectively.

Figure 2. Relationships between the sample number and the confidence level at the 2 m scale at REs
of 5% and 10%.

On the basis of the 2 m scale analysis results, the relationship between the number of
randomly combined samples and the confidence levels at the 10 m, 20 m, 40 m, 80 m, and
160 m scales under the conditions of 10% and 5% errors was further amplified iteratively,
as shown in Figures 3 and 4. Similar to the 2 m scale, the sampling number derived at each
scale increased as the confidence level was improved. When the error and confidence level
were required to be certain, the larger the scale was, the stronger the spatial variability in
soil moisture, and thus, the more samples were needed. At the same scale and the same
confidence level, the smaller the error requirement was, the more sampling points were
needed. In addition, the graphical results also showed that the variation rule of the 10 m
scale and 20 m scale confidence levels was consistent with the number of samples required
in the test area. The variation from the 10 m scale to the 20 m scale in the test area was
negligible and within the constant range of variation.

Figure 3. Relationship between the sample number and the confidence level at the 10 m, 20 m, 40 m,
80 m, and 160 m scales at a relative error of 10%.
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Figure 4. Relationship between the sample number and the confidence level at the 10 m, 20 m, 40 m,
80 m, and 160 m scales at a relative error of 5%.

In the iterative scaling-up process, errors may accumulate gradually. With an increase
in the number of samples, if the confidence level can gradually approach 100%, or if the
confidence level of 100% is the progressive line of the relationship curve (consistent with
the theoretical rule), it can be considered that the number of samples selected at a certain
confidence level is reasonable. In terms of the research results obtained in this paper,
under the condition of a 10% error, as the number of samples increased, the corresponding
confidence level at each scale exhibited a rule of gradually approaching 100% (Figure 3).
However, under the condition of a 5% error, the results obtained at each scale were quite
different: the scales of 20 m and below were acceptable, and the asymptotic process did
not occur at all at the 40 m, 80 m, and 160 m scales (Figure 4), indicating that when the
relative error of 5% was taken as the standard, the accumulation of errors had a significant
impact on the sampling results at the 40 m scale and above, and it was thus necessary to
increase the sampling amount to eliminate this effect and to obtain more reliable results. In
view of this finding, the following analysis was based on the 95% confidence and 10% error
levels. When the 95% confidence level and 10% relative error were taken as the criteria for
determining the number of required samples at each scale, the number of samples required
at the 2 m, 10 m, 20 m, 40 m, 80 m, and 160 m scales were 2, 5, 5, 8, 20, and 42, respectively.

3.3. Relationship between the Coefficient of Variation (CV) and the Reasonable Number of Samples (Rn)

The size of the coefficient of variation critically impacts on the sampling process.
Generally, the larger the coefficient of variation is, the more samples are needed. Traditional
statistics estimates the reasonable sample number based on the size of the coefficient of
variation. However, since the overall error may not meet the requirements of a normal
distribution and mutual independence, the conclusion that the reasonable number of
samples must be proportional to the square of the coefficient of variation [23,24] may not
be reliable in the actual calculation process. In the following text, we perform a preliminary
analysis of the relationship between the reasonable sampling number determined via the
random combination method and the coefficient of variation.

The coefficients of variation (CVs) at the 2 m, 10 m, 20 m, 40 m, 80 m, and 160 m scales
were obtained using formulas (1)–(2) and the water content values measured at each scale,
as shown in Table 2. Considering the small number of CV sample points (only six) and
the small variation between the 10 m and 20 m scales in the test area, to better understand
the relationship between the CV and the reasonable sampling number (Rn), the measure-
ment and analysis processes were additionally performed in areas of 50 m × 50 m and
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100 m × 100 m, and the Rn determination method was the same as that described above
(the 50 m scale analysis was based on 25 10 m × 10 m cells, and the 100 m scale analysis
was based on 4 50 m × 50 m cells).

Under the condition of a 95% confidence level and 10% error, the variation law of
the CV with Rn within the 160 m range is shown in Figure 5. Since the results obtained
at the 10 m and 20 m scales were almost the same, it was difficult to distinguish between
the points corresponding to these two scales in the figure. The results show that the CV
values within the range of 160 m in the test area were all within 0.80. With the expansion
of the scale, the Rn and CV values gradually increased, and both exhibited good linear
relationships. The fitting results (setting the intercept as 0) show the following expressions:

Rn = 55.10CV (R2 = 0.98 ∗ ∗
)

(3)

In the study area considered herein, this formula could best describe the quantitative
relationship between CV and Rn within the 160 m scale.

Table 2. Surface soil moisture statistics at different scales.

Scale σ

cm3 cm−3
µ

cm3 cm−3 CVI CV

2 m

0.019 0.263 0.073

0.074
0.017 0.236 0.070
0.022 0.289 0.075
0.019 0.254 0.076

10 m
0.027 0.215 0.124

0.1090.024 0.259 0.100

20 m
0.021 0.210 0.100

0.1100.024 0.200 0.120

40 m
0.037 0.208 0.178

0.1970.050 0.231 0.216

80 m 0.070 0.198 0.350 0.350

160 m 0.182 0.234 0.778 0.778
Note: σ is the standard deviation, µ is the mean, CVI is the coefficient of variation corresponding to each replicate
plot, and CV is the average coefficient of variation at each scale.

Figure 5. Relationship between Rn and CV at a relative error of 10% and a confidence level of 95%.
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3.4. Regional Scale (
√

A) and Reasonable Number of Samples (Rn)

When performing actual sampling, the reasonable number of samples can be estimated
according to the CV [23,24] of the parameters provided in the literature. However, when
assessing a specific region [35], it is often difficult to determine the CV of the parameters.
In addition, the requirements of a normally distributed overall error and the mutual
independence of the samples are not always met. Therefore, applying the estimated CV
to estimate the Rn often results in relatively large errors. Generally, when the underlying
surface is relatively uniform, the variation degree of the investigated parameters may
increase as the size of the study area increases [39–42].

A change in the regional scale also affects the sampling design of the parameters. More-
over, compared to the CV [37], the regional area (A) or scale (

√
A) is easier to determine.

Therefore, it may be more practical to consider the quantitative relationship between the
regional area (or scale) and the Rn. Figure 6 displays the relationships between the 2 m, 10 m,
20 m, 40 m, 50 m, 80 m, 100 m, and 160 m scales (

√
A) and the Rn under the conditions of

a 95% confidence level and 10% error. As the regional scale increases in size, the number of
reasonable samples (Rn) also gradually increases. Interestingly, within the range of 160 m, the
Rn in the test area still exhibits a good linear relationship with the regional scale (

√
A); this

relationship can be described using the following equation (setting the intercept as 0):

Rn = 0.265
√

A (R2 = 0.98 ∗ ∗
)

(4)

Figure 6. Relationship between the Rn and the regional scale at a relative error of 10% and a
confidence level of 95%.

To test the reliability of regression equation (4), the two scales of 60 m × 60 m and
120 m × 120 m were measured and analyzed using the random combination method (the
60 m scale analysis was based on nine 20 m × 20 m cells, and the 120 m scale analysis
was based on four 60 m × 60 m cells). The reasonable sampling numbers at the 60 m and
120 m scales were found to be 14 and 33, respectively, and the relative errors with the results
calculated using formula (4) were approximately 14% and 4%, respectively. It can be seen
that in the test area, the established regression equation can be used to indirectly estimate
the reasonable number of samples within the 160 m scale, thus providing a basis for the
ground sampling design when monitoring the surface soil moisture content using medium-
resolution remote sensing images (from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Thermal Mapper (TM), etc.).



Atmosphere 2023, 14, 149 10 of 12

4. Conclusions

In this study, the reasonable number of surface soil moisture sampling sites was deter-
mined using the traditional statistical method, stratified sampling method, and random
combination method, with the aim of analyzing the effectiveness of the random combina-
tion method in determining the reasonable sampling number. On this basis, we further
applied the random combination method to analyze and to discuss the reasonable sampling
numbers for assessing surface soil moisture at different scales, the relationship between the
reasonable sampling number, and the coefficient of variation and the relationship between
the reasonable sampling number and the regional scale. In the scaling-up process, the
variations within 10 m and 20 m in the study area were small and basically within the
constant range of variation. Under the condition of a 95% confidence level and 10% error,
when the sampling points of 2 m, 10 m, 20 m, 40 m, 80 m, and 160 m were set as 2, 5, 5, 8,
20, and 42, respectively, the surface soil moisture at the corresponding scale in the study
area could be best characterized. Good linear relationships were observed between the
reasonable surface soil moisture sampling number within the 160 m range in the study
area, and the coefficient of variation and between the reasonable sampling number and the
regional scale. These relational expressions could be used to effectively formulate surface
soil moisture sampling designs [38,43,44].

The random combination method does not only effectively determine the reasonable
surface soil moisture sampling numbers at various scales, but it can also determine the
reasonable sampling number at different scales from scaling up. However, due to the
limitations of the test area, the scale was enlarged only to 160 m in this work using the
random combination method under the condition of a 95% confidence level and 10% error.
Considering the sampling design requirements of different resolution remote sensing im-
ages, when the regional scale and variation intensity continued to increase, the effectiveness
of this scaling-up method, and the relationships between the number of samples and the
coefficient of variation and between the number of samples and the regional scale still
require further study. Potentially, besides surface soil moisture, the random combination
method can be used to estimate the necessary sampling number of other soil properties,
such as pH, texture, porosity, and bulk density. As a key parameter of estimating the
necessary sampling number using the random combination method, the ranges of CV for
soil properties may be obtained through preliminary sampling investigations or retrieval
from the literature. In this study, the sampling domain was limited to within the 160 m
scale, and the research field was with relatively homogeneous soils and a single crop. In
future studies, the application potential of the random combination method in areas with
mixed crops or uneven soil texture also needs further experimental research.
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