Lag Effect of Temperature and Humidity on COVID-19 Cases in 11 Chinese Cities
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. COVID-19 Data
2.4. Social Factors
3. Analytical Method
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortiz-Prado, E.; Simbaña-Rivera, K.; Gomez-Barreno, L.; Rubio-Neira, M.; Guaman, L.P.; Kyriakidis, N.C.; Muslin, C.; Jaramillo, A.M.G.; Barba-Ostria, C.; Cevallos-Robalino, D. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn. Microbiol. Infect. Dis. 2020, 98, 115094. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Chen, R.; Yin, P.; Wang, L.; Liu, C.; Niu, Y.; Wang, W.; Jiang, Y.; Liu, Y.; Liu, J.; Qi, J. Association between ambient temperature and mortality risk and burden: Time series study in 272 main Chinese cities. BMJ 2018, 363, k4306. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 2020, 93, 284–286. [Google Scholar] [CrossRef]
- Ma, Y.; Jiao, H.; Zhang, Y.; Feng, F.; Cheng, B.; Ma, B.; Yu, Z. Short-term effect of extreme air temperature on hospital emergency room visits for cardiovascular diseases from 2009 to 2012 in Beijing, China. Environ. Sci. Pollut. Res. 2020, 27, 38029–38037. [Google Scholar] [CrossRef]
- Ozyigit, A. Understanding Covid-19 transmission: The effect of temperature and health behavior on transmission rates. Infect. Dis. Health 2020, 25, 233–238. [Google Scholar] [CrossRef]
- Auler, A.; Cássaro, F.; Da Silva, V.; Pires, L. Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Sci. Total Environ. 2020, 729, 139090. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, X.; Shi, W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China. J. Popul. Econ. 2020, 33, 1127–1172. [Google Scholar] [CrossRef]
- Adda, J. Economic activity and the spread of viral diseases: Evidence from high frequency data. Q. J. Econ. 2016, 131, 891–941. [Google Scholar] [CrossRef]
- Qi, H.; Xiao, S.; Shi, R.; Ward, M.P.; Chen, Y.; Tu, W.; Su, Q.; Wang, W.; Wang, X.; Zhang, Z. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Sci. Total Environ. 2020, 728, 138778. [Google Scholar] [CrossRef] [PubMed]
- Ujiie, M.; Tsuzuki, S.; Ohmagari, N. Effect of temperature on the infectivity of COVID-19. Int. J. Infect. Dis. 2020, 95, 301–303. [Google Scholar] [CrossRef]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, J.; Yao, J.; Zhang, X.; Li, L.; Xu, X.; He, X.; Wang, B.; Fu, S.; Niu, T. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci. Total Environ. 2020, 726, 138513. [Google Scholar] [CrossRef]
- Engle, S.; Stromme, J.; Zhou, A. Staying at home: Mobility effects of COVID-19. 2020. Available online: https://ssrn.com/abstract=3565703 (accessed on 27 July 2020).
- Holtmann, M.; Jones, M.; Shah, A.; Holtmann, G. Low ambient temperatures are associated with more rapid spread of COVID-19 in the early phase of the endemic. Environ. Res. 2020, 186, 109625. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, B.; Shen, J.; Wang, H.; Feng, F.; Zhang, Y.; Jiao, H. Association between environmental factors and COVID-19 in Shanghai, China. Environ. Sci. Pollut. Res. 2021, 28, 45087–45095. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Gu, Q.; Du, P.; Liang, H.; Dong, Q. Optimal temperature zone for the dispersal of COVID-19. Sci. Total Environ. 2020, 736, 139487. [Google Scholar] [CrossRef]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef] [Green Version]
- Chien, L.-C.; Chen, L.-W.A.; Lin, R.-T. Lagged meteorological impacts on COVID-19 incidence among high-risk counties in the United States—a spatiotemporal analysis. J. Expo. Sci. Environ. Epidemiol. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Yin, J. Lag effects of ozone, PM2. 5, and meteorological factors on COVID-19 new cases at the disease epicenter in queens, New York. Atmosphere 2021, 12, 357. [Google Scholar] [CrossRef]
- Doğan, B.; Jebli, M.B.; Shahzad, K.; Farooq, T.H.; Shahzad, U. Investigating the effects of meteorological parameters on COVID-19: Case study of New Jersey, United States. Environ. Res. 2020, 191, 110148. [Google Scholar] [CrossRef] [PubMed]
- Jingyun, F.; Yongchang, S.; Hongyan, L.; Shilong, P. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Bot. Sin. 2002, 44, 1105–1122. [Google Scholar]
- Huang, C.; Yang, Q.; Guo, Y.; Zhang, Y.; Guo, L. The pattern, change and driven factors of vegetation cover in the Qin Mountains region. Sci. Rep. 2020, 10, 20591. [Google Scholar] [CrossRef]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Jáuregui, E.; Soto, C. Wet-bulb temperature and discomfort index areal distribution in Mexico. Int. J. Biometeorol. 1967, 11, 21–28. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef]
- Vaneckova, P.; Neville, G.; Tippett, V.; Aitken, P.; FitzGerald, G.; Tong, S. Do biometeorological indices improve modeling outcomes of heat-related mortality? J. Appl. Meteorol. Climatol. 2011, 50, 1165–1176. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Wood, S.N.; Augustin, N.H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 2002, 157, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. On p-values for smooth components of an extended generalized additive model. Biometrika 2013, 100, 221–228. [Google Scholar] [CrossRef]
- Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S.-M.; Yuan, B.; Kinoshita, R.; Nishiura, H. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data. J. Clin. Med. 2020, 9, 538. [Google Scholar] [CrossRef] [PubMed]
- Courtemanche, C.; Garuccio, J.; Le, A.; Pinkston, J.; Yelowitz, A. Strong Social Distancing Measures In The United States Reduced The COVID-19 Growth Rate: Study evaluates the impact of social distancing measures on the growth rate of confirmed COVID-19 cases across the United States. Health Aff. 2020, 39, 1237–1246. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, B.; Yuan, J.; Tao, Y. The impact of social distancing and epicenter lockdown on the COVID-19 epidemic in mainland China: A data-driven SEIQR model study. medRxiv 2020. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Flasche, S.; Clifford, S.; Pearson, C.A.; Munday, J.D. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 2020, 5, e261–e270. [Google Scholar] [CrossRef]
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Mills, M.C. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 202004911. [Google Scholar] [CrossRef]
- Hughes, V.C. The Effect of Temperature, Dewpoint, and Population Density on COVID-19 Transmission in the United States: A Comparative Study. Am. J. Public Health Res. 2020, 8, 112–117. [Google Scholar]
- Rocklöv, J.; Sjödin, H. High population densities catalyse the spread of COVID-19. J. Travel Med. 2020, 27, taaa038. [Google Scholar] [CrossRef]
City | Number of Diagnoses | DI Correlation Coefficient | PII Correlation Coefficient | UTI Correlation Coefficient | Model’s r-Squared Value (Adjusted) | Model’s Deviance Explained |
---|---|---|---|---|---|---|
Harbin | 198 | −0.408 * | 0.004 | −0.219 | 0.798 | 85.1% |
Beijing | 413 | −0.595 ** | 0.619 ** | −0.381 * | 0.523 | 70.4% |
Zhengzhou | 157 | −0.539 ** | −0.325 * | −0.580 ** | 0.780 | 88.4% |
Xinyang | 274 | −0.31 8* | −0.300 * | −0.208 | 0.783 | 89.3% |
Chengdu | 141 | −0.459 ** | −0.302 | −0.396 ** | 0.538 | 76.3% |
Chongqing | 568 | −0.621 ** | 0.182 | −0.124 | 0.848 | 91.0% |
Wuhan | 49,615 | 0.007 | −0.835 ** | −0.825 ** | 0.850 | 89.1% |
Shanghai | 337 | −0.632 ** | −0.593 ** | −0.623 ** | 0.891 | 91.5% |
Wenzhou | 500 | −0.513 ** | −0.384 ** | −0.493 ** | 0.961 | 96.7% |
Shenzhen | 408 | −0.481 ** | −0.247 | −0.806 ** | 0.820 | 91.0% |
Guangzhou | 342 | −0.550 ** | −0.215 | −0.758 ** | 0.810 | 83.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, F.; Ma, Y.; Cheng, B.; Zhang, Y.; Li, H.; Qin, P. Lag Effect of Temperature and Humidity on COVID-19 Cases in 11 Chinese Cities. Atmosphere 2022, 13, 1486. https://doi.org/10.3390/atmos13091486
Feng F, Ma Y, Cheng B, Zhang Y, Li H, Qin P. Lag Effect of Temperature and Humidity on COVID-19 Cases in 11 Chinese Cities. Atmosphere. 2022; 13(9):1486. https://doi.org/10.3390/atmos13091486
Chicago/Turabian StyleFeng, Fengliu, Yuxia Ma, Bowen Cheng, Yifan Zhang, Heping Li, and Pengpeng Qin. 2022. "Lag Effect of Temperature and Humidity on COVID-19 Cases in 11 Chinese Cities" Atmosphere 13, no. 9: 1486. https://doi.org/10.3390/atmos13091486
APA StyleFeng, F., Ma, Y., Cheng, B., Zhang, Y., Li, H., & Qin, P. (2022). Lag Effect of Temperature and Humidity on COVID-19 Cases in 11 Chinese Cities. Atmosphere, 13(9), 1486. https://doi.org/10.3390/atmos13091486