Probabilistic Prediction Models and Influence Factors of Indoor Formaldehyde and VOC Levels in Newly Renovated Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Environmental Sampling Locations
2.2. Sampling Procedures and Chemical Analysis
2.2.1. Formaldehyde
2.2.2. Volatile Organic Compounds
2.3. Exposure and Health Risk Assessment
2.4. Uncertainty and Sensitivity Analysis
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the Newly Renovated Houses
3.2. Indoor Formaldehyde and VOC comparison between Opened and Closed Window Conditions
3.3. Indoor Prediction Model for Formaldehyde and VOCs
3.4. Health Risks and Uncertainty and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.Y.; Kung, L.C.; Tsai, W.; Chieh, D.K.; Chang, W.H. The potential risk of sick building syndrome of the emergency department areas in a medical center in Taiwan. Health Technol. 2019, 3, 3. [Google Scholar] [CrossRef]
- Holøs, S.B.; Yang, A.; Lind, M.; Thunshelle, K.; Schild, P.; Mysen, M. VOC emission rates in newly built and renovated buildings, and the influence of ventilation—A review and meta-analysis. Int. J. Vent. 2019, 18, 153–166. [Google Scholar] [CrossRef]
- Lu, C.Y.; Tsai, M.C.; Muo, C.H.; Kuo, Y.H.; Sung, F.C.; Wu, C.C. Personal, Psychosocial and Environmental Factors Related to Sick Building Syndrome in Official Employees of Taiwan. Int. J. Environ. Res. Public Health 2017, 15, 7. [Google Scholar] [CrossRef] [Green Version]
- Worldwide Health Organization (WHO) Regional Office for Europe. Combined or Multiple Exposure to Health Stressors in Indoor Built Environments. 2014. Available online: https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2014/combined-or-multiple-exposure-to-health-stressors-in-indoor-built-environments (accessed on 20 February 2022).
- Chi, C.C.; Chen, W.D.; Gun, M.; Wang, M.; Yang, G.; Shen, X.Y. Law and features of TVOC and Formaldehyde pollution in urban indoor air. Atmos. Environ. 2016, 132, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.J.; Mo, J.H.; Zhang, Y.P.; Xu, Q.J. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Build. Environ. 2014, 72, 75–81. [Google Scholar] [CrossRef]
- Rösch, C.; Kohajda, T.; Röder, S.; van Bergen, M.; Schlink, U. Relationship between sources and patterns of VOCs in indoor air. Atmos. Pollut. Res. 2014, 5, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Logue, J.M.; McKone, T.E.; Sherman, M.H.; Singer, B.C. Hazard assessment of chemical air contaminants measured in residences. Indoor Air 2011, 21, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Mandin, C.; Trantallidi, M.; Cattaneo, A.; Canha, N.; Mihucz, V.G.; Szigeti, T.; Mabilia, R.; Perreca, E.; Spinazzè, A.; Fossati, S.; et al. Assessment of indoor air quality in office buildings across Europe—The OFFICAIR study. Sci. Total Environ. 2017, 579, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Worldwide Health Organization (WHO) Regional Office for Europe. Methods for Sampling and Analysis of Chemical Pollutants in Indoor Air. 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/334389/9789289055239-eng.pdf (accessed on 20 February 2022).
- Worldwide Health Organization (WHO) Regional Office for Europe. Report of the Regional Director: The Work of the WHO Regional Office for Europe in 2020–2021. 2021. Available online: https://apps.who.int/iris/handle/10665/346875 (accessed on 20 February 2022).
- Sérafin, G.; Blondeau, P.; Mandin, C. Indoor air pollutant health prioritization in office buildings. Indoor Air 2021, 31, 646–659. [Google Scholar] [CrossRef]
- Salonen, H.J.; Pasanen, A.L.; Lappalainen, S.K.; Riuttala, H.M.; Tuomi, T.M.; Pasanen, P.O.; Bäck, B.C.; Reijula, K.E. Airborne concentrations of volatile organic compounds, formaldehyde and ammonia in Finnish office buildings with suspected indoor air problems. J. Occup. Environ. Hyg. 2009, 6, 200–209. [Google Scholar] [CrossRef]
- Du, W.; Wang, G. Indoor Air Pollution was Nonnegligible during COVID-19 Lockdown. Aerosol Air Qual. Res. 2020, 20, 1851–1855. [Google Scholar] [CrossRef]
- Brown, S.K. Volatile organic pollutants in new and established buildings in Melbourne, Australia. Indoor Air 2002, 12, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Järnström, H.; Saarela, K.; Kalliokoski, P.; Pasanenc, A.L. Reference values for indoor air pollutant concentrations in new, residential buildings in Finland. Atmos. Environ. 2006, 40, 7178–7191. [Google Scholar] [CrossRef]
- Park, J.S.; Ikeda, K. Variations of formaldehyde and VOC levels during 3 years in new and older homes. Indoor Air 2006, 16, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.X.; Jing, S.G.; Wang, H.L.; Ma, Y.G.; Li, L.; Song, W.M.; Kan, H.D. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci. Total Environ. 2017, 577, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Plaisance, H.; Vignau-Laulhere, J.; Mocho, P.; Sauvat, N.; Raulin, K.; Desauziers, V. Volatile organic compounds concentrations during the construction process in newly-built timber-frame houses: Source identification and emission kinetics. Environ. Sci. Process Impacts 2017, 19, 696–710. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. IARC Monogr. Eval. Carcinog. Risks Humans. 2006, 88, 478. Available online: https://publications.iarc.fr/_publications/media/download/2757/c6a9fc1529ff03f196d3595caf6e198cb9b104ce.pdf (accessed on 20 February 2022).
- International Agency for Research on Cancer (IARC). Benzene. IARC Monogr. Eval. Carcinog. Risks Humans. 2017, 120. Available online: https://publications.iarc.fr/_publications/media/download/6043/20a78ade14e86cf076c3981a9a094f45da6d27cc.pdf (accessed on 20 February 2022).
- Niaz, K.; Bahadar, H.; Maqbool, F.; Abdollahi, M. A review of environmental and occupational exposure to xylene and its health concerns. EXCLI J. 2015, 14, 1167–1186. [Google Scholar] [CrossRef]
- Tsay, Y.S.; Liu, C.C.; Cheng, Y.L.; Lo, S.C.; Yau, J.T. Taiwan Green Building Material Labeling System and Its Application to Green Building Design. J. Archit. 2018, 106, 1–8. [Google Scholar] [CrossRef]
- Torres, J.; Garay-Martinez, R.; Oregi, X.; Torrens-Galdiz, J.I.; Uriarte-Arrien, A.; Pracucci, A.; Casadei, O.; Magnani, S.; Arroyo, N.; Cea, A.M. Plug and Play Modular Façade Construction System for Renovation for Residential Buildings. Buildings 2021, 11, 419. [Google Scholar] [CrossRef]
- Richter, M.; Horn, W.; Juritsch, E.; Klinge, A.; Radeljic, L.; Jann, O. Natural Building Materials for Interior Fitting and Refurbishment—What about Indoor Emissions? Materials 2021, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- Hines, A.L.; Ghosh, T.K. Investigation of Co-Sorption of Gases and Vapors as a Means to Enhance Indoor Air Quality. Phase 2. Water Vapor Uptake and Removal of Chemical Pollutants by Solid Adsorbents. 1993. Available online: https://www.osti.gov/biblio/6884774 (accessed on 20 February 2022).
- Adamova, T.; Hradecký, J.; Pánek, M. Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation. Polymers 2020, 12, 2289. [Google Scholar] [CrossRef] [PubMed]
- He, Z.K.; Zhang, Y.P.; Wei, W.J. Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Build. Environ. 2012, 47, 197–204. [Google Scholar] [CrossRef]
- Yu, C.W.F.; Kim, J.T. Long-term Impact of Formaldehyde and VOC Emissions from Wood-based Products on Indoor Environments; and Issues with Recycled Products. Indoor Built Environ. 2012, 21, 137–149. [Google Scholar] [CrossRef]
- Hun, D.E.; Corsi, R.L.; Morandi, M.T.; Siegel, J.A. Formaldehyde in residences: Long-term indoor concentrations and influencing factors. Indoor Air 2010, 20, 196–203. [Google Scholar] [CrossRef]
- Wu, G.H. A Study of Healthy Green Building Materials in Indoor Air Quality and Healthy Assessment. Master’s Thesis, Taipei University of Technology, Taipei, Taiwan, 2010. [Google Scholar]
- Li, Y.Y. A Study on the Management Strategy of Indoor Air Quality in Taiwan Office Buildings. Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, 2004. [Google Scholar]
- Li, B.Z.; Cheng, Z.; Yao, R.M.; Wang, H.; Yu, W.; Bu, Z.M.; Xiong, J.; Zhang, T.W.; Essah, E.M.; Luo, Z.W.; et al. An investigation of formaldehyde concentration in residences and the development of a model for the prediction of its emission rates. Build. Environ. 2019, 147, 540–550. [Google Scholar] [CrossRef]
- Bourdin, D.; Mocho, P.; Desauziers, V.; Plaisance, H. Formaldehyde emission behavior of building materials: On-site measurements and modeling approach to predict indoor air pollution. J. Hazard Mater. 2014, 280, 164–173. [Google Scholar] [CrossRef]
- He, Z.; Xiong, J.Y.; Kumagai, K.K.; Chen, W.H. An improved mechanism-based model for predicting the long-term formaldehyde emissions from composite wood products with exposed edges and seams. Environ. Int. 2019, 132, 105086. [Google Scholar] [CrossRef]
- Huang, S.D.; Wei, W.J.; Wesschler, L.B.; Salthammer, T.G.; Kan, H.D.; Bu, Z.M.; Zhang, Y.P. Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors. Sci. Total Environ. 2017, 590, 394–405. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhang, X.; Zhang, X.M.; Liu, L.Y.; Li, Y.F.; Sun, W. Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China. Chemosphere 2020, 250, 126324. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA), Guidelines for Human Exposure Assessment (EPA/ 630-P-03-001F). 2005. Available online: https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment (accessed on 20 February 2022).
- Liu, Q.Y.; Liu, Y.J.; Zhang, M.G. Personal exposure and source characteristics of carbonyl compounds and BTEXs within homes in Beijing, China. Build. Environ. 2013, 61, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Taiwan Health Promotion Administration (HPA), Compilation of Exposure Factor of the General Population in Taiwan; Ministry of Health and Welfare: Taipei, Taiwan, 2008.
- Taiwan Ministry of the Interior (MOI), Abridged Life Table in Republic of China Area. 2020. Available online: https://www.moi.gov.tw/english/cl.aspx?n=7780 (accessed on 30 December 2021).
- United States Environmental Protection Agency (US EPA), Guidelines for Carcinogen Risk Assessment (EPA/100/B-1/001). 2019. Available online: https://www.epa.gov/risk/guidelines-human-exposure-assessment (accessed on 20 February 2022).
- Shin, S.H.; Jo, W.K. Volatile organic compound concentrations, emission rates, and source apportionment in newly-built apartments at pre-occupancy stage. Chemosphere 2012, 89, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Bluyssen, P.M.; de Richemont, S.; Crump, D.; Maupetit, F.; Witterseh, T.; Gajdos, P. Actions to reduce the impact of construction products on indoor air: Outcomes of the European project Healthy Air. Indoor Built Environ. 2010, 19, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Nakaoka, H.; Nakayama, Y.; Takaya, K.; Tsumura, K.; Hanazato, M.; Tanaka, S.; Matsushita, K.; Iwayama, R.; Mori, C. Changes in the concentration of volatile organic compounds and aldehydes in newly constructed houses over time. Int. J. Environ. Sci. Technol. 2020, 17, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Kang, D.H.; Choi, D.H.; Yeo, M.S.; Kim, K.W. Comparison of strategies to improve indoor air quality at the pre-occupancy stage in new apartment buildings. Build. Environ. 2008, 43, 320–328. [Google Scholar] [CrossRef]
- Guo, M.; Yu, W.; Zhang, S.; Wang, H.; Wei, S. A numerical model predicting indoor volatile organic compound Volatile Organic Compounds emissions from multiple building materials. Environ. Sci. Pollut. Res. Int. 2020, 27, 587–596. [Google Scholar] [CrossRef]
- D’Amico, A.; Pini, A.; Zazzini, S.; D’Alessandro, D.; Leuzzi, G.; Currà, E. Modelling VOC Emissions from Building Materials for Healthy Building Design. Sustainability 2021, 13, 184. [Google Scholar] [CrossRef]
- Fortenberry, C.; Walker, M.; Dang, A.; Loka, A.; Date, G.; De Carvalho, K.C.; Morrison, G.; Williams, B. Analysis of indoor particles and gases and their evolution with natural ventilation. Indoor Air 2019, 29, 761–779. [Google Scholar] [CrossRef]
- Wei, W.; Ramalho, O.; Malingre, L.; Sivanantham, S.; Little, J.C.; Mandin, C. Machine learning and statistical models for predicting indoor air quality. Indoor Air 2019, 29, 704–726. [Google Scholar] [CrossRef]
- Loh, M.M.; Levy, J.I.; Spengler, J.D.; Houseman, E.A.; Bennett, D.H. Ranking cancer risks of organic hazardous air pollutants in the United States. Environ. Health Perspect. 2007, 115, 1160–1168. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.; Cheng, J.; Jiang, T.; Chen, L.; Xu, B. Health risk assessment and personal exposure to Volatile Organic Compounds (VOCs) in metro carriages—A case study in Shanghai, China. Sci. Total Environ. 2017, 574, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Hadei, M.; Hopke, P.K.; Rafiee, M.; Rastkari, N.; Yarahmadi, M.; Kermani, M.; Shahsavani, A. Indoor and outdoor concentrations of BTEX and formaldehyde in Tehran, Iran: Effects of building characteristics and health risk assessment. Environ. Sci. Pollut. Res. Int. 2018, 25, 27423–27437. [Google Scholar] [CrossRef] [PubMed]
- Sofuoglu, S.C.; Aslan, G.; Inal, F.; Sofuoglu, A. An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. Int. J. Hyg. Environ. Health 2011, 214, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masih, A.; Lall, A.S.; Taneja, A.; Singhvi, R. Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere 2017, 176, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Mečiarová, Ľ.; Vilčeková, S.; Krídlová Burdová, E.; Kiselák, J. Factors Effecting the Total Volatile Organic Compound (TVOC) Concentrations in Slovak Households. Int. J. Environ. Res. Public Health 2017, 14, 1443. [Google Scholar] [CrossRef] [Green Version]
- Bari, M.A.; Kindzierski, W.B.; Wheeler, A.J.; Héroux, M.È.; Wallace, L.A. Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build. Environ. 2015, 90, 114–124. [Google Scholar] [CrossRef]
Variables | Description | Mean ± SD (or n [%]) |
---|---|---|
Building type | House | 4 (33.4) |
Apartment | 7 (63.6) | |
Building floor level | 1 | 2 (18.2) |
2 | 2 (18.2) | |
>3 | 7 (63.6) | |
Room type | Living room | 10 (45.5) |
Bedroom | 12 (54.5) | |
Room size (m2) | Living room | 33.7 ± 9.2 |
Bedroom | 22.0 ± 14.9 | |
The loading factor of the decoration material (m2/m3) | Cold paint multi-layer wooden materials (CPM) | 0.05 ± 0.08 |
Laminate hard plastic multi-layer materials (LHP) | 0.08 ± 0.11 | |
Veneer multi-layer wooden materials (VM) | 0.10 ± 0.13 | |
Multi-layer materials for system furniture (SF) | 0.07 ± 0.12 | |
Cement paint (CP) | 1.00 ± 0.39 | |
Wooden floor (WF) | 0.11 ± 0.17 | |
CO2 level (ppm) | Open window | 509 ± 38.1 |
Close window | 561 ± 81.6 | |
Temperature (°C) | Open window | 28.9 ± 1.41 |
Close window | 28.7 ± 1.49 | |
Relative humidity (RH, %) | Open window | 71.9 ± 5.08 |
Close window | 74.4 ± 3.27 |
Open Window | Close Window | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | Df (%) | N a | Mean | SD | Min | 50% | Max | Df (%) | N a | Mean | SD | Min | 50% | Max |
Living rooms | ||||||||||||||
Formaldehyde | 100.0 | 10 | 40.9 | 36.7 | 2.4 | 30.9 | 116.4 | 100.0 | 10 | 144.6 | 93.1 | 34.2 | 92.8 | 295.5 |
Benzene | 87.5 | 7 | 1.8 | 1.3 | 0.3 | 1.4 | 3.8 | 87.5 | 7 | 3.7 | 3.7 | 0.3 | 1.9 | 10.5 |
Toluene | 100.0 | 8 | 129.9 | 172.7 | 3.4 | 86.7 | 536.7 | 100.0 | 8 | 235.9 | 189.5 | 8.1 | 275.0 | 532.8 |
Ethyl benzene | 25.0 | 2 | 0.7 | 0.9 | 0.3 | 0.3 | 2.7 | 62.5 | 5 | 2.5 | 3.1 | 0.3 | 1.3 | 8.9 |
m-xylene | 25.0 | 2 | 0.4 | 0.2 | 0.3 | 0.3 | 1.0 | 62.5 | 5 | 2.2 | 2.2 | 0.3 | 1.4 | 5.3 |
p-xylene | 37.5 | 3 | 0.7 | 0.8 | 0.3 | 0.3 | 2.5 | 87.5 | 7 | 4.6 | 4.8 | 0.3 | 2.8 | 11.9 |
o-xylene | 37.5 | 3 | 0.5 | 0.3 | 0.3 | 0.3 | 1.0 | 62.5 | 5 | 4.2 | 6.1 | 0.3 | 2.0 | 18.3 |
Styrene | 50.0 | 4 | 2.7 | 4.7 | 0.3 | 0.8 | 13.9 | 75.0 | 6 | 34.9 | 58.1 | 0.3 | 5.4 | 156.7 |
TVOCs | 100.0 | 8 | 136.7 | 177.0 | 6.8 | 89.4 | 551.3 | 100.0 | 8 | 289.1 | 255.1 | 10.3 | 290.2 | 740.5 |
Bedrooms | ||||||||||||||
Formaldehyde | 100.0 | 10 | 33.3 | 24.7 | 9.8 | 24.4 | 76.5 | 100.0 | 10 | 141.2 | 72.9 | 12.2 | 127.8 | 236.1 |
Benzene | 70.0 | 7 | 1.8 | 2.6 | 0.3 | 1.0 | 8.5 | 90.0 | 9 | 3.0 | 2.3 | 0.3 | 2.3 | 6.7 |
Toluene | 100.0 | 10 | 83.6 | 79.6 | 2.0 | 50.5 | 213.9 | 100.0 | 10 | 185.6 | 160.2 | 7.7 | 143.6 | 455.0 |
Ethyl benzene | 10.0 | 1 | 0.3 | 0.1 | 0.3 | 0.3 | 0.6 | 60.0 | 6 | 2.0 | 2.4 | 0.3 | 1.6 | 8.2 |
m-xylene | 10.0 | 1 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 60.0 | 6 | 1.8 | 2.0 | 0.3 | 1.1 | 6.3 |
p-xylene | 40.0 | 4 | 0.5 | 0.4 | 0.3 | 0.3 | 1.3 | 90.0 | 9 | 4.0 | 4.3 | 0.3 | 2.8 | 14.4 |
o-xylene | 20.0 | 2 | 0.4 | 0.2 | 0.3 | 0.3 | 0.8 | 70.0 | 7 | 3.6 | 5.9 | 0.3 | 1.5 | 19.8 |
Styrene | 30.0 | 3 | 1.1 | 1.9 | 0.3 | 0.3 | 6.4 | 60.0 | 6 | 19.9 | 38.4 | 0.3 | 1.1 | 117.2 |
TVOCs | 100.0 | 10 | 88.1 | 81.2 | 3.7 | 56.8 | 217.9 | 100.0 | 10 | 220.6 | 203.9 | 11.5 | 167.0 | 629.1 |
Regression Coefficients (95% CI) | ||||
---|---|---|---|---|
Predictors | Formaldehyde | Benzene | Toluene | Ethyl Benzene |
Room size (m2) | −0.003 (−0.005~0.007) | −0.001 (−0.001~0.000) * | −0.010 (−0.032~0.012) | 0.001 (−0.001~0.001) |
Indoor temperature (°C) | 0.015 (−0.006~0.037) | 0.003 (0.001~0.006) * | 0.273 (0.068~0.478) * | 0.002 (−0.002~0.006) |
Indoor RH (%) | −0.001 (−0.006~0.005) | 0.001 (−0.001~0.001) | 0.019 (−0.023~0.060) # | 0.001 (−0.001~0.001) |
Cold paint multi-layer wooden materials (CPM) | 0.140 (−0.115~0.394) | 0.010 (−0.026~0.046) | 3.207 (0.663~5.752) * | 0.025 (−0.022~0.072) |
Laminate hard plastic multi-layer materials (LHP) | 0.081 (−0.206~0.369) | 0.013 (−0.053~0.027) | 1.761 (1.023~4.546) * | 0.004 (−0.047~0.056) |
Veneer multi-layer wooden materials (VM) | 0.190 (−0.103~0.484) | 0.010 (−0.047~0.068) | 1.569 (−2.472~5.611) | 0.002 (−0.019~0.076) # |
Multi-layer materials for system furniture (SF) | 0.071 (−0.137~0.279) | 0.002 (−0.049~0.054) | 1.860 (−1.761~5.480) | 0.017 (−0.050~0.084) |
Cement paint (CP) | 0.001 (−0.072~0.074) | 0.012 (0.002~0.026) * | 0.649 (−1.603~0.306) | 0.001 (−0.019~0.017) |
Wooden floor (WF) | 0.283 (0.140~0.426) * | 0.008 (−0.015~0.031) | 0.447 (−1.160~2.053) * | 0.030 (0.002~0.059) * |
Open rate of window (%) | −0.114 (−0.159~−0.069) * | −0.009 (−0.014 ~ −0.004) * | −0.515 (−0.868~−0.161) * | −0.010 (−0.160~−0.003) * |
Adjusted R2 (%) | 64.9 | 61.4 | 42.9 | 48.0 |
p-Value for model | <0.001 | 0.005 | 0.006 | 0.040 |
Predictors | m-Xylene | p-Xylene | o-Xylene | Styrene |
Room size (m2) | 0.001 (−0.001~0.001) | 0.001 (−0.001~0.001) | 0.001 (−0.001~0.001) | 0.001 (−0.005~0.008) |
Indoor temperature (℃) | 0.001 (−0.002~0.004) | 0.002 (−0.004~0.007) | 0.002 (−0.006~0.010) | 0.014 (−0.045~0.073) |
Indoor RH (%) | 0.001 (−0.001~0.001) | 0.001 (−0.001~0.001) | 0.001 (−0.002~0.001) | −0.006 (−0.018~0006) |
Cold paint multi-layer wooden materials (CPM) | 0.014 (−0.019~0.048) | 0.031 (−0.039~0.101) | 0.027 (−0.076~0.130) | 0.140 (−0.593~0.872) |
Laminate hard plastic multi-layer materials (LHP) | 0.005 (−0.041~0.032) | 0.006 (−0.082~0.071) | 0.013 (−0.100~0.126) | 0.140 (−0.742~0.661) |
Veneer multi-layer wooden materials (VM) | 0.001 (−0.053~0.053) | 0.004 (−0.115~0.107) | 0.023 (−0.186~0.141) | 0.050 (−0.013~1.114) # |
Multi-layer materials for system furniture (SF) | 0.001 (−0.047~0.048) | 0.002 (−0.097~0.102) | 0.008 (−0.139~0.154) | 0.181 (−0.861~1.223) |
Cement paint (CP) | 0.001 (−0.013~0.012) | 0.001 (−0.025~0.027) | 0.008 (−0.031~0.047) | 0.034 (−0.240~0.309) |
Wooden floor (WF) | 0.022 (0.001~0.044) * | 0.051 (0.007~0.095) * | 0.064 (0.001~0.129) * | 0.630 (0.167~1.092) * |
Open rate of window (%) | −0.008 (−0.013~−0.003) * | −0.017 (−0.027~−0.007) * | −0.017 (−0.031~−0.003) * | −0.132 (−0.234~−0.030) * |
Adjusted R2 (%) | 57.8 | 41.2 | 40.7 | 50.1 |
p-Value for model | 0.011 | 0.008 | 0.040 | 0.040 |
Adult (19–65 Years Old) | Children (6–12 Years Old) | |||
---|---|---|---|---|
Risk | Male | Female | Male | Female |
Hazard index | ||||
Hepatic effect | ||||
MCS mean | 2.63 × 10−2 | 2.48 × 10−2 | 3.78 × 10−2 | 3.87 × 10−2 |
MCS P50 | 2.30 × 10−2 | 2.16 × 10−2 | 2.99 × 10−2 | 3.13 × 10−2 |
MCS P95 | 5.40 × 10−2 | 5.15 × 10−2 | 9.18 × 10−2 | 9.12 × 10−2 |
Urinary effect | ||||
MCS mean | 0.268 | 0.233 | 0.354 | 0.364 |
MCS P50 | 0.183 | 0.158 | 0.218 | 0.228 |
MCS P95 | 0.815 | 0.707 | 1.148 | 1.170 |
Developmental effect | ||||
MCS mean | 3.95 × 10−3 | 3.43 × 10−3 | 5.23 × 10−3 | 5.36 × 10−3 |
MCS P50 | 3.48 × 10−3 | 3.01 × 10−3 | 4.15 × 10−3 | 4.35 × 10−3 |
MCS P95 | 8.12 × 10−3 | 7.10 × 10−3 | 1.28 × 10−2 | 1.27 × 10−2 |
Cancer risk | ||||
MCS mean | 1.81 × 10−5 | 1.56 × 10−5 | 2.39 × 10−5 | 2.43 × 10−5 |
MCS P50 | 1.41 × 10−5 | 1.21 × 10−5 | 1.72 × 10−5 | 1.77 × 10−5 |
MCS P95 | 4.46 × 10−5 | 3.88 × 10−5 | 6.56 × 10−5 | 6.55 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-T.; Tsai, R.-Y.; Chen, H.-L.; Tsay, Y.-S.; Lee, C.-C. Probabilistic Prediction Models and Influence Factors of Indoor Formaldehyde and VOC Levels in Newly Renovated Houses. Atmosphere 2022, 13, 675. https://doi.org/10.3390/atmos13050675
Lin W-T, Tsai R-Y, Chen H-L, Tsay Y-S, Lee C-C. Probabilistic Prediction Models and Influence Factors of Indoor Formaldehyde and VOC Levels in Newly Renovated Houses. Atmosphere. 2022; 13(5):675. https://doi.org/10.3390/atmos13050675
Chicago/Turabian StyleLin, Wu-Ting, Ru-Yin Tsai, Hsiu-Ling Chen, Yaw-Shyan Tsay, and Ching-Chang Lee. 2022. "Probabilistic Prediction Models and Influence Factors of Indoor Formaldehyde and VOC Levels in Newly Renovated Houses" Atmosphere 13, no. 5: 675. https://doi.org/10.3390/atmos13050675
APA StyleLin, W. -T., Tsai, R. -Y., Chen, H. -L., Tsay, Y. -S., & Lee, C. -C. (2022). Probabilistic Prediction Models and Influence Factors of Indoor Formaldehyde and VOC Levels in Newly Renovated Houses. Atmosphere, 13(5), 675. https://doi.org/10.3390/atmos13050675