Measurement of Indoor-Outdoor Carbonyls in Three Different Universities Located in the Metropolitan Zone of Mexico Valley during the First Period of Confinements Due to COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling Method
2.3. Quality Assurance
2.4. Analytical Method
2.5. Statistic Analysis
2.6. Exposure ad Risk Assessment
3. Results and Discussion
3.1. Diurnal and Seasonal Variation of Carbonyls
3.1.1. Indoor-Outdoor Carbonyls Concentrations
University-1 (UAM)
University-2 (UDLA)
University-3 (UNAM)
3.1.2. Diurnal and Seasonal Variation of Indoor Carbonyl Concentrations
University-1 (UAM)
University-2 (UDLA)
University-3 (UNAM)
3.1.3. Diurnal and Seasonal Variation of Outdoor Carbonyls Concentrations
University-1 (UAM)
University-2 (UDLA)
University-3 (UNAM)
3.2. Meteorology
3.3. Estimated Concentration Ratios (I/E): Concentrations and I/E of Carbonyls
3.4. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitchel, C.S.; Zhang, J.J.; Sigsgaard, T.; Jantunen, M.; Lioy, P.J.; Samson, R.; Karol, M.H. Current state of the science: Health effects and indoor environmental quality. Environ. Health Perspect. 2007, 115, 958–964. [Google Scholar] [CrossRef]
- Rodriguez, A.; Rodriguez, D.; Soto, A.; Bravo, I.; Diaz-De Mera, Y.; Notario, A.; Aranda, A. Products and mechanism of the reaction of Cl atoms with unsaturated alcohols. Atmos. Environ. 2012, 50, 214–224. [Google Scholar] [CrossRef]
- Zannoni, N.; Li, M.; Wang, N.; Ernle, L.; Bekö, G.; Wargocki, P.; Langer, S.; Weschler, C.J.; Morrison, G.; Williams, J. Effect of Ozone, Clothing, Temperature, and Humidity on the Total OH Reactivity Emitted from Humans. Environ. Sci. Technol. 2021, 55, 13614–13624. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Levy, J.I.; Clougherty, J.E.; Baxter, L.K.; Houseman, E.A.; Paciorek, C.J. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Res. Rep. (Health Eff. Inst.) 2010, 152, 5–80. [Google Scholar]
- Massolo, L.; Rehwagen, M.; Porta, A.; Ronco, A.; Herbarth, O.; Mueller, A. Indoor–outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ. Toxicol. 2010, 25, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Zenkevich, I.G.; Ioffe, B.V. Volatile Organic Compounds in the atmosphere of forests. Atmos. Environ. 1985, 19, 1–8. [Google Scholar] [CrossRef]
- Carlier, P.; Hannachi, H.; Mouvier, G. The chemistry of carbonyl compounds in the atmosphere—A review. Atmos. Environ. 1986, 20, 2079–2099. [Google Scholar] [CrossRef]
- Grosjean, D.; Green, P.; Grosjean, E. Liquid chromatography analysis of carbonyl (2,4-Dinitrophenyl) hydrazones with detection by diode array ultraviolet spectroscopy and by atmospheric pressure negative chemical ionization mass spectrometry. Anal. Chem. 1999, 71, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, D.; Grosjean, E.; Moreira, L. Speciated ambient carbonyls in Rio de Janeiro, Brazil. Environ. Sci. Technol. 2002, 36, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Kimbrough, S.; Palma, T.; Baldauf, R.W. Analysis of mobile source air toxics (MSATs)—Near-road VOC and carbonyl concentrations. Air Waste Manag. Assoc. 2014, 64, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.; Nicely, J.; Wolfe, G.; Hanisco, T.; Salawitch, R.; Canty, T.; Dickerson, R.; Apel, E.; Baidar, S.; Bannan, T.; et al. Formaldehyde in the tropical western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models. J. Geophys. Res. Atmos. 2017, 122, 11201–11226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luecken, D.; Napelenok, S.; Strum, M.; Scheffe, R.; Phillips, S. Sensitivity of ambient atmospheric formaldehyde and ozone to precursor species and source types across the United States. Environ. Sci. Technol. 2018, 52, 4668–4675. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.; Phillips, S.; Strum, M.; Eyth, A.; Thurman, J. Contribution of mobile sources to secondary formation of carbonyl compounds. J. Air Waste Manag. Assoc. 2020, 70, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Schuetzele, D.; Siegl, W.O.; Jensen, E.T.; Dearth, M.A.; Kaiser, E.W.; Gorse, E.R.; Kreucher, W.; Kulik, E. The relationship between gasoline composition and vehicle hidrocarbon emission: A review of current, studies and future research needs. Environ. Health Perspect. 1994, 102, 3–12. [Google Scholar]
- Griffin, R.J.; Chen, J.; Carmody, K.; Vutukuru, S.; Dabdub, D. Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States. J. Geophys. Res 2007, 112, D10S17. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S.; Ma, Z. In-situ implementation and validation of a co2-based adaptive demand-controlled ventilation strategy in a multi-zone office building. Build. Environ. 2011, 46, 124–133. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Guidelines for Indoor Air Quality: Selected Pollutants; The WHO European Centre for Environment and Health: Bonn, Germany, 2000. [Google Scholar]
- Afshari, A.; Matson, U.; Ekberg, L.E. Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air 2005, 15, 141–150. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Formaldehyde. Concise International Chemical Assessment Document 40; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Sexton, K.; Adgate, J.L.; Ramachandran, G.; Pratt, G.C.; Mongin, S.J.; Stock, T.H.; Morandi, M.Y. Comparison of personal, indoor, and outdoor exposure to hazardous air pollutants in three urban communities. Environ. Sci. Technol. 2004, 38, 423–430. [Google Scholar] [CrossRef]
- Krzyzanowski, M.; Cohen, A. Development of WHO Guidelines for Indoor Air Quality (IAQ). In Proceedings of the 1st EnVIE Conference on Indoor Air Quality and Health for EU, Brussels, Belgium, 16–17 September 2008; pp. 7–13. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G. Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: First observational study based on initial epidemic diffusion. BMJ Open 2020, 10, e039338. [Google Scholar] [CrossRef]
- Patial, S.; Kumar, A.; Raizada, P.; Le, Q.V.; Nguyen, V.H.; Selvasembian, R.; Singh, P.; Thakur, S.; Hussain, C.M. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. J. Environ. Chem. Eng. 2022, 10, 107527. [Google Scholar] [CrossRef] [PubMed]
- Innocenzi, P.; Stagi, L. Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chem. Sci. 2020, 11, 6606–6622. [Google Scholar] [CrossRef] [PubMed]
- Ninyà, N.; Vallecillos, L.; Marcé, R.M.; Borrull, F. Evaluation of air quality in indoor and outdoor environments: Impact of anti-COVID-19 measures. Sci. Total Environ. 2022, 25, 155611. [Google Scholar] [CrossRef] [PubMed]
- Isaifan, R.J. The dramatic impact of coronavirus outbreak on air quality: Has it saved as much as it has killed so far. J. Environ. Sci. Manag. 2020, 6, 275–288. [Google Scholar]
- Liu, Q.; Gao, Y.; Huang, W.; Ling, Z.; Wang, Z.; Wang, X. Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmos. Res. 2022, 274, 106184. [Google Scholar] [CrossRef]
- Liggio, J.; Li, S.; McLaren, R. Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110, D10304. [Google Scholar] [CrossRef]
- Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 2005, 110, D23207. [Google Scholar] [CrossRef]
- Waxman, E.M.; Dzepina, K.; Ervens, B.; Taylor, J.L.; Aumont, B.; Jimenez, J.L.; Madronich, S.; Volkamer, R. Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry. Geophys. Res. Lett. 2013, 40, 978–982. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef]
- Yap, T.F.; Liu, Z.; Shveda, R.A.; Preston, D.J. A predictive model of the temperature-dependent inactivation of coronaviruses. Appl. Phys. Lett. 2020, 117, 060601. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency Environmental Protection Agency. Method TO-11 A. Determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography (HPLC); United States Environmental Protection Agency Environmental Protection Agency: Raleigh, NC, USA, 1999; EPA 600/4-89-018.0/4-89-018.
- García, R. Caracterización y evaluación de aldehídos en ambientes intramuros y extramuros en la ciudad de México. Master’s Thesis, Sciences Faculty, UNAM, Mexico City, Mexico, 2002. [Google Scholar]
- Bautista González, M.N. Evaluación de una técnica de separación y cuantificación para carbonilos en la atmósfera. Bachelor Thesis, Chemistry Faculty, UNAM, Mexico City, Mexico, 2015. [Google Scholar]
- Ho, S.; Yu, J.Z. Determination of airborne carbonyls: Comparison of a thermal desorption/GC method with the standard DNPH/HPLC method. Environ. Sci. Technol. 2004, 38, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, Y.L.; Xie, C.J.; Huang, J.; Yu, J.Z.; Feng, J.L.; Sheng, G.Y.; Fu, J.M.; Wu, M.H. Determination of gaseous carbonyl compounds by their pentafluorophenyl hydrazones with gas chromatography/mass spectrometry. Anal. Chim. Acta 2009, 635, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Shin, H.S. Simple and automatic determination of aldehydes and acetone in water by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Sep. Sci. 2011, 34, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Jo, S.H.; Song, H.N.; Brown, R.J.; Kim, K.H. Contrasting recovery patterns of 2,4-dinitrophenylhydrazones (DNPH) derivative of carbonyls between liquid and gas phase standards using HPLC-based análisis. Atmos. Environ. 2012, 62, 562–565. [Google Scholar] [CrossRef]
- Pang, X.; Lewis, A.C.; Rodenas-Garcia, M. Microfluidic lab-on-a-chip derivatization for gaseous carbonyl analysis. J. Chromatogr. A 2013, 1296, 93–103. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Formaldehyde. In IARC Monographs on the Identification of Carcinogenic Hazards to Humans; WHO: Geneva, Switzerland, 2012; Volume 100F, (Suppl. S7), pp. 403–435. Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono100F-29.pdf (accessed on 2 August 2022).
- IARC (International Agency for Research on Cancer). Acetaldehyde. In IARC Monographs on the Identification of Carcinogenic Hazards to Humans; WHO: Geneva, Switzerland, 1999; Volume 36, Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/06/TR42-12.pdf (accessed on 2 August 2022).
- IARC (International Agency for Research on Cancer). Acrolein. In IARC Monographs on the Identification of Carcinogenic Hazards to Humans; WHO: Geneva, Switzerland, 2021; Volume 128, Available online: https://publications.iarc.fr/602 (accessed on 2 August 2022).
- Zhang, Z.; Wang, X.; Zhang, Y.; Lu, S.; Huang, Z.; Huang, X.; Wang, Y. Ambient air benzene at background sites in China’s most developed coastal regions: Exposure levels, source implications and health risks. Sci. Total Environ. 2015, 511, 792–800. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Integrated Risk Information System (IRIS). Carcinogenic Effects of Formaldehyde and Acetaldehyde. 1998. Available online: http://www.epa.gov/iris (accessed on 2 August 2022).
- US Environmental Protection Agency (EPA). Air Risk Assessment Workplan. Regions 3, 4 and 5; Ohio Environmental Protection Agency, Division of Air Pollution Control: Kentucky, OH, USA, 1997. [Google Scholar]
- US Environmental Protection Agency (EPA). Human health evaluation manual (part F, supplemental guidance for inhalation risk assessment): Final [EPA Report] (EPA/540/-R-070/002). In Risk Assessment Guidance for Superfund Volume I; U.S. Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- US Environmental Protection Agency (EPA). Quantitative estimate of carcinogenic risk from inhalation exposure to acetaldehyde. In Chemical Assessment Summary; Integrated Risk Information System (IRIS): Washington, DC, USA, 1987; pp. 12–14. Available online: http://www.cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=290 (accessed on 2 August 2022).
- US Environmental Protection Agency (EPA). National Center for Environmental Assessment. Quantitative estimate of carcinogenic risk from inhalation exposure to formaldehyde. In Chemical Assesment Summary; Integrated Risk Information System (IRIS): Washington, DC, USA, 1990; pp. 10–14. Available online: http://www.cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=419 (accessed on 2 August 2022).
- Franco, B.; Clarisse, L.; Stavrakou, T.; Muller, J.F.; Puzzer, A.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C.; Coheur, P.F. Acetone atmospheric distribution retrieve from space. Geophys. Res. Lett. 2019, 46, 2884–2893. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Coke, M.C.; Utembe, S.R.; Archibaldi, A.T.; Maxwell, P.; Morris, W.C.; Shallcross, D.E. A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM CRI. Atmos. Environ. 2015, 112, 269–277. [Google Scholar] [CrossRef]
- Secretaría del Medio Ambiente de la Ciudad de México. Inventario de emisiones de la Zona Metropolitana del Valle de México 2018. Dirección General de Calidad del Aire. Dirección de Proyectos de Calidad del Aire. Ciudad de México. Agosto 2021. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-cdmx-2018/Inventario-de-emisiones-cdmx-2018.pdf (accessed on 2 August 2022).
- Solórzano García, L.A. Determinación de factores de emisión para carbonilos provenientes de fuentes pequeñas de combustión con diferentes tipos de biomasa. Master’s Thesis, UNAM, Mexico City, Mexico, 2017. [Google Scholar]
- Mitova, M.I.; Cluse, C.; Correia, D.; Goujon-Ginglinger, C.G.; Kleinhans, S.; Poget, L.; Sendyk, S.S. Comprehensive Air Quality Assessment of the Tobacco Heating System 2.2 under Simulated Indoor Environments. Atmosphere 2021, 12, 989. [Google Scholar] [CrossRef]
- de Blas, M.; Navazo, M.; Alonso, L.; Durana, N.; Gomez, M.C.; Iza, J. Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Sci. Total Environ. 2012, 426, 327–335. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Zhang, C.L.; Zhang, Y.; He, Z.; Gao, R.; Wang, W. Optimization and preliminary application of the detection method of carbonyl compounds in the ambient air. Res. J. Environ. Sci. 2019, 32, 821–829. [Google Scholar] [CrossRef]
- ATSDR, Agency for Toxic Substances and Disease Registry (ATSDR). Medical Management Guidelines for Formaldehyde (HCHO). 2008. Available online: http://www.atsdr.cdc.gov/mhmi/mmglll.html (accessed on 30 September 2016).
- OEHHA, Office of Environmental Health Hazard Assessment (OEHHA). Chronic Toxicity Summary: Formaldehyde; Environmental Protection Agency (Cal/EPA): Sacramento, CA, USA, 2008. [Google Scholar]
Site | Ventilation | Characteristics |
---|---|---|
University-1 (UAM) | Through doors and windows. | Two-story building, walls painted with vinyl paint, granite floors, wood chipboard furniture. No smoking building. |
University-2 (UDLA) | Through doors and windows. | Three-story building, walls painted with vinyl paint, granite floors, wood chipboard furniture. On the roof of the building there is an exclusive area for smoking. |
University-3 (UNAM) | Through doors and windows. | Three-story building, walls painted with vinyl paint, tile floors, wood-paneled cabinets. No smoking building. |
Carbonyl Compounds | CAS No. | Reference Concentration RfC 1 (mg/m3) | Inhalation Cancer Slope Factor SF 2 | Cancer Classification 3 |
---|---|---|---|---|
Formaldehyde | 50-00-0 | 9.83 × 10−3 | 2.1 × 10−2 | Group 1 |
Acetaldehyde | 75-07-0 | 9.00 × 10−3 | 1 × 10−2 | Group 2 B |
Acrolein | 107-02-8 | 2 × 10−5 | - | Group 2 A |
Acetone | 67-64-1 | - | * | ** |
Propionaldehyde | 123-38-6 | 8 × 10−3 | * | ** |
Butyraldehyde | 123-72-8 | - | * | ** |
Concentration (µg m−3) | University-1 (UAM) | University-2 (UDLA) | University-3 (UNAM) |
---|---|---|---|
Total carbonyls Indoor | 187.6 | 531.7 | 836 |
Total carbonyls Outdoor | 45 | 63.8 | 89 |
Campaign | Carbonyls Concentrations (µg/m3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FA Indoor | FA Outdoor | AA Indoor | AA Outdoor | ACR Indoor | ACR Outdoor | AC Indoor | AC Outdoor | PR Indoor | PR Outdoor | BUT Indoor | BUT Outdoor | |
Spring 2019 | 2.53 | 0.94 | 1.95 | 1.34 | 0.46 | 0.37 | 68.58 | 4.18 | 0.42 | 0.33 | 5.18 | 0.95 |
Summer 2019 | 5.59 | 1.32 | 7.41 | 7.80 | 2.46 | 4.49 | 97.23 | 7.24 | 0.72 | 0.40 | 1.84 | 1.44 |
Fall 2019 | 4.41 | 2.39 | 2.84 | 4.90 | 8.47 | 0.63 | 27.84 | 9.71 | 1.27 | 1.15 | 1.79 | 1.94 |
University-1 (UAM) | ||||||||||||||||||
Season: | Spring | Summer | Fall | |||||||||||||||
Sampling Period (h) | Indoor Carbonyls Concentrations (µg/m3) | |||||||||||||||||
FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | |
8–10 | 3.87 | 2.55 | 0.06 | 5.24 | 0.37 | 1.04 | 3.77 | 2.38 | 1.36 | 6.65 | 0.50 | 2.04 | 7.47 | 5.66 | 1.06 | 17.72 | 1.07 | 2.90 |
10–12 | 4.27 | 3.96 | - | 6.03 | 0.63 | 1.15 | 4.75 | 3.64 | 1.71 | 15.30 | 1.09 | 1.61 | 6.64 | 5.74 | 47.36 | 13.59 | 1.65 | 2.32 |
12–14 | 3.81 | 3.48 | - | 7.63 | 0.67 | 1.24 | 4.74 | 3.54 | 1.65 | 11.60 | 1.10 | 1.30 | 8.01 | 5.27 | 0.23 | 17.00 | 3.91 | 1.89 |
14–16 | 4.05 | 3.18 | - | 6.77 | 0.83 | 1.30 | * | * | * | * | * | * | * | * | * | * | * | * |
University-2 (UDLA) | ||||||||||||||||||
Season: | Spring | Summer | Fall | |||||||||||||||
Sampling period (h) | Indoor Carbonyls concentrations (µg/m3) | |||||||||||||||||
FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | |
8–10 | 0.80 | 0.89 | 0.28 | 39.76 | 0.20 | 4.67 | 1.20 | 34.23 | 1.52 | 16.05 | 0.08 | 1.28 | 0.02 | 0.04 | 1.97 | 0.15 | - | 1.59 |
10–12 | 1.26 | 1.28 | 0.28 | 204.55 | 0.27 | 11.98 | 3.76 | 9.25 | 3.81 | 91.80 | 0.69 | 2.37 | 0.07 | 0.06 | - | 0.31 | - | 2.77 |
12–14 | 1.40 | 1.32 | 0.11 | 348.71 | 0.26 | 18.43 | 2.73 | 5.35 | 2.56 | 96.37 | 0.65 | 1.98 | 0.04 | 0.05 | 0.23 | 0.19 | - | 1.25 |
14–16 | 1.38 | 1.21 | 0.11 | 159.80 | 0.26 | 17.22 | * | * | * | * | * | * | * | * | * | * | * | * |
University-3 (UNAM) | ||||||||||||||||||
Season: | Spring | Summer | Fall | |||||||||||||||
Sampling period (h) | Indoor Carbonyls concentrations (µg/m3) | |||||||||||||||||
FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | |
8–10 | 2.12 | 1.33 | 1.88 | 8.48 | 0.37 | 1.26 | 9.74 | 2.54 | 3.35 | 149.23 | 0.58 | 2.38 | 4.75 | 2.42 | - | 51.44 | 0.13 | 0.70 |
10–12 | 2.51 | 1.58 | 1.48 | 12.57 | 0.50 | 1.59 | 9.49 | 2.90 | 3.87 | 287.62 | 0.94 | 1.75 | 5.65 | 3.20 | - | 65.92 | 0.34 | 1.13 |
12–14 | 2.39 | 1.36 | 0.51 | 7.74 | 0.39 | 1.17 | 10.13 | 2.85 | 2.27 | 200.49 | 0.86 | 1.87 | 7.02 | 3.10 | - | 84.27 | 0.55 | 1.55 |
14–16 | 2.46 | 1.25 | 0.68 | 15.70 | 0.30 | 1.12 | * | * | * | * | * | * | * | * | * | * | * | * |
University-1 (UAM) | ||||||||||||||||||
Season: | Spring | Summer | Fall | |||||||||||||||
Sampling Period | Outdoor Carbonyls concentrations (µg/m3) | |||||||||||||||||
FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | |
8–10 | 0.96 | 1.26 | 0.96 | 3.47 | 0.37 | 0.84 | 2.19 | 1.90 | 2.50 | 14.88 | 0.47 | 1.89 | 1.94 | 2.31 | 1.59 | 6.88 | 0.80 | 1.61 |
10–12 | 0.93 | 1.14 | 0.68 | 2.46 | 0.31 | 0.73 | 1.58 | 1.70 | 1.93 | 5.30 | 0.47 | 1.16 | 1.66 | 1.79 | 0.06 | 5.11 | 0.65 | 1.09 |
12–14 | 0.91 | 1.16 | 0.05 | 2.62 | 0.30 | 0.90 | 1.23 | 1.61 | 2.22 | 11.80 | 0.39 | 0.96 | 1.83 | 1.14 | 0.23 | 3.72 | 0.30 | 0.74 |
14–16 | 0.70 | 0.90 | 0.09 | 2.42 | 0.23 | 0.69 | * | * | * | * | * | * | * | * | * | * | * | * |
University-2 (UDLA) | ||||||||||||||||||
Season: | Spring | Summer | Fall | |||||||||||||||
Sampling period | Outdoor Carbonyls concentrations (µg/m3) | |||||||||||||||||
FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | |
8–10 | 0.84 | 1.00 | 0.23 | 2.88 | 0.23 | 0.49 | 1.25 | 54.74 | 11.03 | 7.51 | 0.02 | 1.78 | 2.08 | 2.77 | 0.63 | 6.21 | 1.10 | - |
10–12 | 1.41 | 1.76 | 0.06 | 9.00 | 0.42 | 1.09 | 1.66 | 3.18 | 9.17 | 9.62 | 0.53 | 2.14 | 2.98 | 4.17 | 0.68 | 11.23 | 1.29 | - |
12–14 | 1.42 | 1.55 | - | 5.78 | 0.34 | 1.16 | 2.02 | 2.98 | 8.11 | 9.30 | 0.60 | 2.37 | 1.15 | 1.66 | 0.63 | 5.03 | 0.38 | - |
14–16 | 1.39 | 1.45 | - | 5.56 | 0.27 | 1.12 | * | * | * | * | * | * | * | * | * | * | * | * |
University-3 (UNAM) | ||||||||||||||||||
Season: | Spring | Summer | Fall | |||||||||||||||
Sampling period | Outdoor Carbonyls concentrations (µg/m3) | |||||||||||||||||
FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | FA | AA | ACR | AC | PR | BUT | |
8–10 | 0.76 | 1.41 | 1.02 | 4.11 | 0.39 | 0.97 | 0.70 | 1.72 | 2.67 | 2.27 | 0.19 | 0.81 | 3.55 | 10.04 | - | 33.72 | 1.94 | 2.59 |
10–12 | 0.89 | 1.81 | 0.51 | 4.39 | 0.52 | 1.31 | 0.64 | 1.33 | 1.14 | 2.46 | 0.70 | 1.03 | 3.19 | 10.77 | - | 13.94 | 2.11 | 2.92 |
12–14 | 0.67 | 1.48 | 0.06 | 3.90 | 0.34 | 1.11 | 0.64 | 1.01 | 1.65 | 2.05 | 0.20 | 0.83 | 3.16 | 9.45 | - | 1.59 | 1.78 | 2.71 |
14–16 | 0.45 | 1.20 | 0.51 | 3.52 | 0.25 | 0.98 | * | * | * | * | * | * | * | * | * | * | * | * |
Concentration (µg m−3) | Spring | Summer | Fall |
---|---|---|---|
Acetone | 2.81 | 4.21 | 1.76 |
Formaldehyde | 21.8 | 5.63 | 3.08 |
Acetaldehyde | 1.51 | 1.22 | 0.55 |
Acrolein | 1.19 | 0.62 | 13.25 |
Propionaldehyde | 1.3 | 1.8 | 0.71 |
Butyraldehyde | 5.19 | 1.31 | 0.19 |
Concentration (µg m−3) | University-1 (UAM) | University-2 (UDLA) | University-3 (UNAM) |
---|---|---|---|
Acetone | 2.01 | 7.51 | 15.59 |
Formaldehyde | 3.7 | 0.65 | 3.75 |
Acetaldehyde | 2.6 | 0.51 | 0.06 |
Acrolein | 4.83 | 0.02 | 1.88 |
Propionaldehyde | 2.69 | 0.20 | 0.45 |
Butyraldehyde | 1.55 | 1.35 | 0.32 |
Cancer Risk Assessment Parameters | University-1 (UAM) | University-2 (UDLA) | University-3 (UNAM) |
---|---|---|---|
E (mg/kg/day) Fomaldehyde Indoor | 0.0016 | 0.0003 | 0.0017 |
E (mg/kg/day) Acetaldehyde Indoor | 0.0012 | 0.0014 | 0.0006 |
LTCR Formaldehyde Indoor | 3.2719 × 10−5 | 8.193 × 10−6 | 3.62 × 10−5 |
LTCR Acetaldehyde Indoor | 1.1735 × 10−5 | 1.418 × 10−5 | 6.908 × 10−6 |
E (mg/kg/day) Fomaldehyde Outdoor | 0.0178 | 0.0003 | 0.0003 |
E (mg/kg/day) Acetaldehyde Outdoor | 0.0003 | 0.0009 | 0.0008 |
LTCR Formaldehyde Outdoor | 3 × 10−4 | 7.188 × 10−6 | 6.347 × 10−6 |
LTCR Acetaldehyde Outdoor | 2.9763 × 10−6 | 9.717 × 10−6 | 8.2 × 10−6 |
Non-Cancer Risk Assessment Parameters | University-1 (UAM) | University-2 (UDLA) | University-3 (UNAM) |
---|---|---|---|
HQ Formaldehyde Indoor | 4.95 × 10−1 | 1.295 × 10−1 | 5.67 × 101 |
HQ Acetaldehyde Indoor | 4.11 × 10−1 | 5.141 × 10−1 | 2.5 × 10−1 |
HQ Acrolein Indoor | 2.47 × 102 | 5.7× 101 | 1.99 × 101 |
HQ Propionaldehyde Indoor | 1.38 × 10−1 | 3.78 × 10−2 | 6.96 × 10−1 |
HQ Formaldehyde Oudoor | 1.37 × 10−1 | 1.704 × 10−1 | 1.504 × 10−1 |
HQ Acetaldehyde Outdoor | 1.62 × 10−1 | 5.28 × 10−1 | 4.459 × 10−1 |
HQ Acrolein Outdoor | 7.54 × 101 | 1.125 × 101 | 1.05 × 102 |
HQ Propionaldehyde Outdoor | 5.23 × 10−2 | 5.63 × 10−2 | 1.03 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, R.; Gómez, S.S.; Andraca, G.; Jardón, R.T.; Reynoso, A.G.; Cerón, J.G.; Cerón, R.M.; Alvarez, V.M. Measurement of Indoor-Outdoor Carbonyls in Three Different Universities Located in the Metropolitan Zone of Mexico Valley during the First Period of Confinements Due to COVID-19. Atmosphere 2022, 13, 1560. https://doi.org/10.3390/atmos13101560
García R, Gómez SS, Andraca G, Jardón RT, Reynoso AG, Cerón JG, Cerón RM, Alvarez VM. Measurement of Indoor-Outdoor Carbonyls in Three Different Universities Located in the Metropolitan Zone of Mexico Valley during the First Period of Confinements Due to COVID-19. Atmosphere. 2022; 13(10):1560. https://doi.org/10.3390/atmos13101560
Chicago/Turabian StyleGarcía, Rocío, Sandra Silva Gómez, Gema Andraca, Ricardo Torres Jardón, Agustín García Reynoso, Julia Griselda Cerón, Rosa María Cerón, and Violeta Mugica Alvarez. 2022. "Measurement of Indoor-Outdoor Carbonyls in Three Different Universities Located in the Metropolitan Zone of Mexico Valley during the First Period of Confinements Due to COVID-19" Atmosphere 13, no. 10: 1560. https://doi.org/10.3390/atmos13101560
APA StyleGarcía, R., Gómez, S. S., Andraca, G., Jardón, R. T., Reynoso, A. G., Cerón, J. G., Cerón, R. M., & Alvarez, V. M. (2022). Measurement of Indoor-Outdoor Carbonyls in Three Different Universities Located in the Metropolitan Zone of Mexico Valley during the First Period of Confinements Due to COVID-19. Atmosphere, 13(10), 1560. https://doi.org/10.3390/atmos13101560