Application of Ion-Mobility Spectrometry to Chemical Analysis at High Concentrations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- At high concentrations, the arrival-time shift decreases as ion production saturates and the concentration of the substance approaches the limit of ionizability; no shift occurs when that limit is reached.
- The higher the proton affinity, the greater the arrival time shift at low concentrations, and the lower limit of quantification.
- The higher the proton affinity, the lower the upper limit of quantification, with the concentration at which a substance reaches the limit of ionizability at high concentrations decreasing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Bao, Y.; Xiang, F.; Wang, Z.; Ren, L.; Pang, X.; Wang, X.; Han, X.; Ning, P. Pollution Characteristics and Health Risk Assessment of VOCs in Jinghong. Atmosphere 2022, 13, 613. [Google Scholar] [CrossRef]
- Han, L.; Chen, L.; Li, K.; Bao, Z.; Zhao, Y.; Zhang, X.; Cen, K. Source Apportionment of Volatile Organic Compounds (VOCs) during Ozone Polluted Days in Hangzhou, China. Atmosphere 2019, 10, 780. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Li, H.; Cheng, N.; Zhang, Y.; Zhang, K.; Li, L. Variations in Levels and Sources of Atmospheric VOCs during the Continuous Haze and Non-Haze Episodes in the Urban Area of Beijing: A Case Study in Spring of 2019. Atmosphere 2021, 12, 171. [Google Scholar]
- Mokalled, T.; Adjizian Gérard, J.; Abboud, M.; Liaud, C.; Nasreddine, R.; Le Calvé, S. An Assessment of Indoor Air Quality in the Arrivals Hall of Beirut–Rafic Hariri International Airport: Monitoring of VOCs and NO2. Atmosphere 2021, 12, 400. [Google Scholar]
- Sakunkoo, P.; Phonphinyo, S.; Maneenin, N.; Jirapornkul, C.; Limmongkon, Y.; Rayubkul, J.; Thongtip, S.; Sangkham, S. Comparison of Volatile Organic Compound Concentrations in Ambient Air among Different Source Areas around Khon Kaen, Thailand. Atmosphere 2021, 12, 1694. [Google Scholar]
- Konar, S. Information as regulation: The effect of community right to know laws on toxic emissions. J. Environ. Econ. Manag. 1997, 32, 109–127. [Google Scholar] [CrossRef]
- Takaya, K.; Nakaoka, H.; Suzuki, N.; Nakayama, Y.; Shimoda, M.; Todaka, E.; Mori, C. Prospects for development of portable real-time VOC analyzer. Jpn. J. Clin. Ecol. 2017, 26, 92–97. [Google Scholar]
- Vehviläinen, T.; Lindholm, H.; Rintamäki, H.; Pääkkönen, R.; Hirvone, A.; Niemi, O.; Vinha, J. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work. J. Occup. Environ. Hyg. 2016, 13, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, E.; Halle, S.; Valois, I.; Ryan, P.E.; Haddad, S.; Rodriguez, M.; Aroussi, B.E.; Simard, S.; Delpla, I.; Proulx, F.; et al. Temporal and spatial variations in the levels of prominent airborne disinfection by-products at four indoor swimming pools. J. Occup. Environ. Hyg. 2022, 4, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.P.; Hammond, S.K.; Nicas, M.; Hubbard, A.E. Worker Exposure to Volatile Organic Compounds in the Vehicle Repair Industry. J. Occup. Environ. Hyg. 2007, 4, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, A.; Möhle, J.; Hitzemann, M.; Zimmermann, S. Novel ion drift tube for high-performance ion mobility spectrometers based on a composite material. Int. J. Ion Mobil. Spectrom. 2020, 23, 75–81. [Google Scholar] [CrossRef]
- Borsdorf, H.; Schelhorn, H.; Flachowsky, J.; Döring, H.-R.; Stach, J. Determination of n-alkanes and branched chain alkanes by corona discharge ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 1999, 2, 9–14. [Google Scholar]
- Tabrizchi, M.; Khezri, E. The effect of ion molecule reactions on peaks. Int. J. Ion Mobil. Spectrom. 2008, 11, 19–25. [Google Scholar] [CrossRef]
- Takaya, K.; Hagiwara, M.; Matoba, S.; Takaya, M.; Shibata, N. A real-time gas monitoring system based on ion mobility spectrometry for workplace environmental measurements. Ind. Health 2022, 60, 40–46. [Google Scholar] [CrossRef]
- Takaya, K.; Hagiwara, M.; Matoba, S.; Takaya, M.; Shibata, N. Development of Real-Time Gas Monitor Using an Ion Mobility Spectrometer for Work Environment Measurement. J. Occup. Saf. Health 2021, 14, 141–147. [Google Scholar] [CrossRef]
- McDaniel, R.W.; Mason, E.A. The Mobility and Diffusion of Ions in Gases; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- Mason, E.A.; McDaniel, R.W. Transport Properties of Ions in Gases; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Takaya, K.; Hasegawa, Y.; Koizumi, T.; Tanuma, H. Mobilities of polyatomic molecular ions in He gas. Int. J. Ion Mobil. Spectrom. 2016, 19, 183–187. [Google Scholar] [CrossRef]
- Takaya, K.; Hasegawa, Y.; Koizumi, T. Mobilities of CH3O+, C2H5O+ and C3H7O+ ions in He gas. Chem. Phys. Lett. 2017, 679, 21–24. [Google Scholar] [CrossRef]
- Takaya, K.; Hasegawa, Y.; Koizumi, T. Comparison of isomeric C3H7O+ ion mobilities using fragment ions from 2-butanol and tert-butanol in He and Ne. Chem. Phys. Lett. 2020, 739, 137045. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z. Ion Mobility Spectrometry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Tabrizchi, M.; Shooshtari, S. Proton affinity measurements using ion mobility spectrometry. J. Chem. Thermodyn. 2003, 35, 863–870. [Google Scholar] [CrossRef]
- Hunter, E.P.L.; Lias, S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656. [Google Scholar] [CrossRef]
Parameter | This Study | Ahrens et al. [11] | Tabrizchi et al. [13] |
---|---|---|---|
Ionization region | 4.2 cm | 1 cm | 4 cm |
Drift region | 11 cm | 3.1 cm | 11 cm |
Corona discharge voltage | 4.7 kV, 2.6 kV | Electrospray ionization | 7 kV |
Drift field | 186 V·cm−1 | 282.5 V·cm−1 | 466 V·cm−1 |
Temperature | Room temperature | Room temperature | Room temperature ~270 °C |
Shutter grid interval | 100 ms | 25 ms | 20 ms |
Flow rate of sample gas | 200 mL·min−1 | 10 mL·min−1 | 500 mL·min−1 |
Flow rate of drift gas | 50 mL·min−1 | 120 mL·min−1 | 700 mL·min−1 |
Concentration (ppm) | Arrival Time (ms) |
---|---|
75.2 | 44.9 |
325.7 | 46.2 |
601.4 | 47.7 |
1098.7 | 50.6 |
Concentration (ppm) | Arrival Time (ms) |
---|---|
60.5 | 48.7 |
371 | 51.7 |
627 | 53.0 |
1053 | 55.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takaya, K.; Shibata, N. Application of Ion-Mobility Spectrometry to Chemical Analysis at High Concentrations. Atmosphere 2022, 13, 1380. https://doi.org/10.3390/atmos13091380
Takaya K, Shibata N. Application of Ion-Mobility Spectrometry to Chemical Analysis at High Concentrations. Atmosphere. 2022; 13(9):1380. https://doi.org/10.3390/atmos13091380
Chicago/Turabian StyleTakaya, Kazunari, and Nobuyuki Shibata. 2022. "Application of Ion-Mobility Spectrometry to Chemical Analysis at High Concentrations" Atmosphere 13, no. 9: 1380. https://doi.org/10.3390/atmos13091380
APA StyleTakaya, K., & Shibata, N. (2022). Application of Ion-Mobility Spectrometry to Chemical Analysis at High Concentrations. Atmosphere, 13(9), 1380. https://doi.org/10.3390/atmos13091380